
Solutions Manual
to accompany

Applied Numerical Methods
With MATLAB for Engineers and Scientists

Steven C. Chapra

Tufts University

 1

CHAPTER 1

1.1 You are given the following differential equation with the initial condition, v(t = 0) = 0,

2v
m

c
g

dt

dv d−=

Multiply both sides by m/cd

2vg
c

m

dt

dv

c

m

dd

−=

Define dcmga /=

22 va
dt

dv

c

m

d

−=

Integrate by separation of variables,

dt
m

c

va

dv d∫∫ =
− 22

A table of integrals can be consulted to find that

a

x

axa

dx 1

22
tanh

1 −=
−∫

Therefore, the integration yields

Ct
m

c

a

v

a

d +=−1tanh
1

If v = 0 at t = 0, then because tanh–1(0) = 0, the constant of integration C = 0 and the solution

is

t
m

c

a

v

a

d=−1tanh
1

This result can then be rearranged to yield

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
= t

m

gc

c

gm
v d

d

tanh

1.2 This is a transient computation. For the period from ending June 1:

 2

Balance = Previous Balance + Deposits – Withdrawals

Balance = 1512.33 + 220.13 – 327.26 = 1405.20

The balances for the remainder of the periods can be computed in a similar fashion as

tabulated below:

Date Deposit Withdrawal Balance

1-May $ 1512.33

 $ 220.13 $ 327.26

1-Jun $ 1405.20

 $ 216.80 $ 378.61

1-Jul $ 1243.39

 $ 350.25 $ 106.80

1-Aug $ 1586.84

 $ 127.31 $ 450.61

1-Sep $ 1363.54

1.3 At t = 12 s, the analytical solution is 50.6175 (Example 1.1). The numerical results are:

step v(12)
absolute

relative error

2 51.6008 1.94%

1 51.2008 1.15%

0.5 50.9259 0.61%

where the relative error is calculated with

%100
analytical

numericalanalytical
 error relative absolute ×

−
=

The error versus step size can be plotted as

0.0%

1.0%

2.0%

0 0.5 1 1.5 2 2.5

relative error

Thus, halving the step size approximately halves the error.

1.4 (a) The force balance is

 3

v
m

c
g

dt

dv '
−=

Applying Laplace transforms,

V
m

c

s

g
vsV

'
)0(−=−

Solve for

mcs

v

mcss

g
V

/'

)0(

)/'(+
+

+
= (1)

The first term to the right of the equal sign can be evaluated by a partial fraction expansion,

mcs

B

s

A

mcss

g

/')/'(+
+=

+
 (2)

)/'(

)/'(

)/'(mcss

BsmcsA

mcss

g

+
++

=
+

Equating like terms in the numerators yields

A
m

c
g

BA

'

0

=

=+

Therefore,

'

' c

mg
B

c

mg
A −==

These results can be substituted into Eq. (2), and the result can be substituted back into Eq.

(1) to give

mcs

v

mcs

cmg

s

cmg
V

/'

)0(

/'

'/'/

+
+

+
−=

Applying inverse Laplace transforms yields

tmctmc eve
c

mg

c

mg
v)/'()/'()0(

''

−− +−=

or

 4

()tmctmc e
c

mg
evv)/'()/'(1

'
)0(−− −+=

where the first term to the right of the equal sign is the general solution and the second is the

particular solution. For our case, v(0) = 0, so the final solution is

()tmce
c

mg
v)/'(1

'

−−=

(b) The numerical solution can be implemented as

62.192)0(
1.68

5.12
81.90)2(=⎥⎦

⎤
⎢⎣
⎡ −+=v

2087.62)62.19(
1.68

5.12
81.962.19)4(=⎥⎦

⎤
⎢⎣
⎡ −+=v

The computation can be continued and the results summarized and plotted as:

t v dv/dt

0 0 9.81

2 19.6200 6.2087

4 32.0374 3.9294

6 39.8962 2.4869

8 44.8700 1.5739

10 48.0179 0.9961

12 50.0102 0.6304

0

20

40

60

0 4 8 12

Note that the analytical solution is included on the plot for comparison.

 5

1.5 (a) The first two steps are

Bq/L 8.91.0)10(2.010)1.0(=−=c

Bq/L 604.91.0)8.9(2.08.9)2.0(=−=c

The process can be continued to yield

t c dc/dt

0 10.0000 -2.0000

0.1 9.8000 -1.9600

0.2 9.6040 -1.9208

0.3 9.4119 -1.8824

0.4 9.2237 -1.8447

0.5 9.0392 -1.8078

0.6 8.8584 -1.7717

0.7 8.6813 -1.7363

0.8 8.5076 -1.7015

0.9 8.3375 -1.6675

1 8.1707 -1.6341

(b) The results when plotted on a semi-log plot yields a straight line

2

2.1

2.2

2.3

2.4

0 0.2 0.4 0.6 0.8 1

The slope of this line can be estimated as

20203.0
1

)10ln()1707.8ln(
−=

−

Thus, the slope is approximately equal to the negative of the decay rate.

1.6 The first two steps yield

[] 16667.05.0 33333.000 5.0
1200

400
)0(sin

1200

400
30)5.0(2 −=−+=⎥⎦

⎤
⎢⎣
⎡ −+=y

[] 21841.05.0 333333.0)5.0(sin16667.0)1(2 −=−+−=y

 6

The process can be continued to give

t y

0 0

0.5 -0.16667

1 -0.21841

1.5 -0.03104

2 0.299793

2.5 0.546537

3 0.558955

3.5 0.402245

4 0.297103

4.5 0.416811

5 0.727927

-0.4

0

0.4

0.8

0 1 2 3 4 5

y

1.7)1()(
t

m

c

e
c

gm
tv

⎟
⎠
⎞

⎜
⎝
⎛−

−=

jumper #1: smetv /87.44)1(
5.12

)1.68(8.9
)(

10
1.68

5.12

=−=
⎟
⎠
⎞

⎜
⎝
⎛−

jumper #2:)1(
14

)75(8.9
87.44 75

14
t

e
⎟
⎠
⎞

⎜
⎝
⎛−

−=

te 18666.05.525.5287.44 −−=

te 18666.014533.0 −=
te 18666.0ln14533.0ln −=

t = 10.33 sec

1.8 Qin = Qout

Q1 = Q2 + Q3

 7

30 = 20 + vA3

10 = 5 A3

A3 = 2 m2

1.9 0=∑−∑ outin MM

[] [] 0350200140020040050MP12001000 =++++−+++

Metabolic production = 300 grams

1.10 ∑ = 60tbody weigh %

605.15.4125.45.4 =+++++ IW

% Intracellular water body weight = 33 %

605.15.4125.45.4 =+++++ IW

∑ = 100body water %

100555.7205.75.7 =+++++ TW

% Transcellular water of body water = 2.5 %

 8

CHAPTER 2

2.1

>> q0 = 10;R = 50;L = 5;C = 1e-4;

>> t = linspace(0,.5);

>> q = q0*exp(-R*t/(2*L)).*cos(sqrt(1/(L*C)-(R/(2*L))^2)*t);

>> plot(t,q)

2.2

>> z = linspace(-3,3);

>> f = 1/sqrt(2*pi)*exp(-z.^2/2);

>> plot(z,f)

>> xlabel('z')

>> ylabel('frequency')

2.3 (a)
>> t = linspace(5,30,6)

 9

t =

 5 10 15 20 25 30

(b)
>> x = linspace(-3,3,7)

x =

 -3 -2 -1 0 1 2 3

2.4 (a)
>> v = -2:.75:1

v =

 -2.0000 -1.2500 -0.5000 0.2500 1.0000

(b)
>> r = 6:-1:0

r =

 6 5 4 3 2 1 0

2.5
>> F = [10 12 15 9 12 16];

>> x = [0.013 0.020 0.009 0.010 0.012 0.010];

>> k = F./x

k =

 1.0e+003 *

 0.7692 0.6000 1.6667 0.9000 1.0000 1.6000

>> U = .5*k.*x.^2

U =

 0.0650 0.1200 0.0675 0.0450 0.0720 0.0800

>> max(U)

ans =

 0.1200

2.6
>> TF = 32:3.6:93.2;

>> TC = 5/9*(TF-32);

>> rho = 5.5289e-8*TC.^3-8.5016e-6*TC.^2+6.5622e-5*TC+0.99987;

>> plot(TC,rho)

 10

2.7

>> A = [.035 .0001 10 2;

.02 .0002 8 1;

.015 .001 20 1.5;

.03 .0007 24 3;

.022 .0003 15 2.5]

A =

 0.0350 0.0001 10.0000 2.0000

 0.0200 0.0002 8.0000 1.0000

 0.0150 0.0010 20.0000 1.5000

 0.0300 0.0007 24.0000 3.0000

 0.0220 0.0003 15.0000 2.5000

>> U = sqrt(A(:,2))./A(:,1).*(A(:,3).*A(:,4)./(A(:,3)+2*A(:,4))).^(2/3)

U =

 0.3624

 0.6094

 2.5167

 1.5809

 1.1971

2.8

>> t = 10:10:60;

>> c = [3.4 2.6 1.6 1.3 1.0 0.5];

>> tf = 0:70;

>> cf = 4.84*exp(-0.034*tf);

>> plot(t,c,'s',tf,cf,'--')

 11

2.9

>> t = 10:10:60;

>> c = [3.4 2.6 1.6 1.3 1.0 0.5];

>> tf = 0:70;

>> cf = 4.84*exp(-0.034*tf);

>> semilogy(t,c,'s',tf,cf,'--')

2.10

>> v = 10:10:80;

>> F = [25 70 380 550 610 1220 830 1450];

>> vf = 0:100;

>> Ff = 0.2741*vf.^1.9842;

>> plot(v,F,'d',vf,Ff,':')

 12

2.11

>> v = 10:10:80;

>> F = [25 70 380 550 610 1220 830 1450];

>> vf = 0:100;

>> Ff = 0.2741*vf.^1.9842;

>> loglog(v,F,'d',vf,Ff,':')

2.12

>> x = linspace(0,3*pi/2);

>> c = cos(x);

>> cf = 1-x.^2/2+x.^4/factorial(4)-x.^6/factorial(6);

>> plot(x,c,x,cf,'--')

 13

 14

CHAPTER 3

3.1 The M-file can be written as

function sincomp(x,n)

i = 1;

tru = sin(x);

ser = 0;

fprintf('\n');

fprintf('order true value approximation error\n');

while (1)

 if i > n, break, end

 ser = ser + (-1)^(i - 1) * x^(2*i-1) / factorial(2*i-1);

 er = (tru - ser) / tru * 100;

 fprintf('%3d %14.10f %14.10f %12.8f\n',i,tru,ser,er);

 i = i + 1;

end

This function can be used to evaluate the test case,

>> sincomp(1.5,8)

order true value approximation error

 1 0.9974949866 1.5000000000 -50.37669564

 2 0.9974949866 0.9375000000 6.01456523

 3 0.9974949866 1.0007812500 -0.32945162

 4 0.9974949866 0.9973911830 0.01040643

 5 0.9974949866 0.9974971226 -0.00021414

 6 0.9974949866 0.9974949557 0.00000310

 7 0.9974949866 0.9974949869 -0.00000003

 8 0.9974949866 0.9974949866 0.00000000

3.2 The M-file can be written as

function futureworth(P, i, n)

nn = 0:n;

F = P*(1+i).^nn;

y = [nn;F];

fprintf('\n year future worth\n');

fprintf('%5d %14.2f\n',y);

This function can be used to evaluate the test case,

>> futureworth(100000,0.08,8)

 year future worth

 0 100000.00

 1 108000.00

 2 116640.00

 3 125971.20

 4 136048.90

 5 146932.81

 6 158687.43

 7 171382.43

 8 185093.02

 15

3.3 The M-file can be written as

function annualpayment(P, i, n)

nn = 1:n;

A = P*i*(1+i).^nn./((1+i).^nn-1);

y = [nn;A];

fprintf('\n year annualpayment\n');

fprintf('%5d %14.2f\n',y);

This function can be used to evaluate the test case,

>> annualpayment(35000,.076,5)

 year annualpayment

 1 37660.00

 2 19519.34

 3 13483.26

 4 10473.30

 5 8673.76

3.4 The M-file can be written as

function Tavg = avgtemp(Tmean, Tpeak, tstart, tend)

omega = 2*pi/365;

t = tstart:tend;

Te = Tmean + (Tpeak-Tmean)*cos(omega*(t-205));

Tavg = mean(Te);

This function can be used to evaluate the test cases,

>> avgtemp(5.2,22.1,0,59)

ans =

 -10.8418

>> avgtemp(23.1,33.6,180,242)

ans =

 33.0398

3.5 The M-file can be written as

function vol = tankvol(R, d)

if d < R

 vol = pi * d ^ 3 / 3;

elseif d <= 3 * R

 v1 = pi * R ^ 3 / 3;

 v2 = pi * R ^ 2 * (d - R);

 vol = v1 + v2;

else

 error('overtop')

end

This function can be used to evaluate the test cases,

 16

>> tankvol(1,0.5)

ans =

 0.1309

>> tankvol(1,1.2)

ans =

 1.6755

>> tankvol(1,3.0)

ans =

 7.3304

>> tankvol(1,3.1)

??? Error using ==> tankvol

overtop

3.6 The M-file can be written as

function [r, th] = polar(x, y)

r = sqrt(x .^ 2 + y .^ 2);

if x < 0

 if y > 0

 th = atan(y / x) + pi;

 elseif y < 0

 th = atan(y / x) - pi;

 else

 th = pi;

 end

else

 if y > 0

 th = pi / 2;

 elseif y < 0

 th = -pi / 2;

 else

 th = 0;

 end

end

th = th * 180 / pi;

This function can be used to evaluate the test cases. For example, for the first case,

>> [r,th]=polar(1,1)

r =

 1.4142

th =

 90

The remaining cases are

 17

 x y r θ

 1 1 1.4142 90

 1 −1 1.4142 −90

 1 0 1.0000 0

 −1 1 1.4142 135

 −1 −1 1.4142 −135

 −1 0 1.0000 180

 0 1 1.0000 90

 0 −1 1.0000 −90

 0 0 0.0000 0

3.7 The M-file can be written as

function polar2(x, y)

r = sqrt(x .^ 2 + y .^ 2);

n = length(x);

for i = 1:n

 if x(i) < 0

 if y(i) > 0

 th(i) = atan(y(i) / x(i)) + pi;

 elseif y(i) < 0

 th(i) = atan(y(i) / x(i)) - pi;

 else

 th(i) = pi;

 end

 else

 if y(i) > 0

 th(i) = pi / 2;

 elseif y(i) < 0

 th(i) = -pi / 2;

 else

 th(i) = 0;

 end

 end

 th(i) = th(i) * 180 / pi;

end

ou = [x;y;r;th];

fprintf('\n x y radius angle\n');

fprintf('%8.2f %8.2f %10.4f %10.4f\n',ou);

This function can be used to evaluate the test cases and display the results in tabular form,

>> polar2(x,y)

 x y radius angle

 1.00 1.00 1.4142 90.0000

 1.00 -1.00 1.4142 -90.0000

 1.00 0.00 1.0000 0.0000

 -1.00 1.00 1.4142 135.0000

 -1.00 -1.00 1.4142 -135.0000

 -1.00 0.00 1.0000 180.0000

 0.00 1.00 1.0000 90.0000

 0.00 -1.00 1.0000 -90.0000

 0.00 0.00 0.0000 0.0000

 18

3.8 The M-file can be written as

function grade = lettergrade(score)

if score >= 90

 grade = 'A';

elseif score >= 80

 grade = 'B';

elseif score >= 70

 grade = 'C';

elseif score >= 60

 grade = 'D';

else

 grade = 'F';

end

This function can be tested with a few cases,

>> lettergrade(95)

ans =

A

>> lettergrade(45)

ans =

F

>> lettergrade(80)

ans =

B

3.9 The M-file can be written as

function Manning(A)

A(:,5) = sqrt(A(:,2))./A(:,1).*(A(:,3).*A(:,4)./(A(:,3)+2*A(:,4))).^(2/3);

fprintf('\n n S B H U\n');

fprintf('%8.3f %8.4f %10.2f %10.2f %10.4f\n',A');

This function can be run to create the table,

>> Manning(A)

 n S B H U

 0.035 0.0001 10.00 2.00 0.3624

 0.020 0.0002 8.00 1.00 0.6094

 0.015 0.0010 20.00 1.50 2.5167

 0.030 0.0007 24.00 3.00 1.5809

 0.022 0.0003 15.00 2.50 1.1971

 19

3.10 The M-file can be written as

function beam(x)

xx = linspace(0,x);

n=length(xx);

for i=1:n

 uy(i) = -5/6.*(sing(xx(i),0,4)-sing(xx(i),5,4));

 uy(i) = uy(i) + 15/6.*sing(xx(i),8,3) + 75*sing(xx(i),7,2);

 uy(i) = uy(i) + 57/6.*xx(i)^3 - 238.25.*xx(i);

end

plot(xx,uy)

function s = sing(xxx,a,n)

if xxx > a

 s = (xxx - a).^n;

else

 s=0;

end

This function can be run to create the plot,

>> beam(10)

3.11 The M-file can be written as

function cylinder(r, L)

h = linspace(0,2*r);

V = (r^2*acos((r-h)./r)-(r-h).*sqrt(2*r*h-h.^2))*L;

plot(h, V)

This function can be run to the plot,

>> cylinder(2,5)

 20

 21

CHAPTER 4

4.1 The true value can be computed as

911,352,2
)577.031(

)577.0(6
)22.1('

22
=

×−
=f

Using 3-digits with chopping

004.031

996.03

332.0332929.0

577.0
46.3462.3)577.0(66

2

2

chopping2

chopping

=−
=

⎯⎯⎯ →⎯=
=

⎯⎯⎯ →⎯==

x

x

x

x
x

250,216
004.0

46.3

)996.01(

46.3
)577.0('

22
==

−
=f

This represents a percent relative error of

%8.90
911,352,2

250,216911,352,2
=

−
=tε

Using 4-digits with chopping

0013.031

9987.03

3329.0332929.0

577.0
462.3462.3)577.0(66

2

2

chopping2

chopping

=−
=

⎯⎯⎯ →⎯=
=

⎯⎯⎯ →⎯==

x

x

x

x
x

521,048,2
0013.0

462.3

)9987.01(

462.3
)577.0('

22
==

−
=f

This represents a percent relative error of

%9.12
911,352,2

521,048,2911,352,2
=

−
=tε

Although using more significant digits improves the estimate, the error is still considerable.

The problem stems primarily from the fact that we are subtracting two nearly equal numbers

in the denominator. Such subtractive cancellation is worsened by the fact that the

denominator is squared.

4.2 First, the correct result can be calculated as

043053.035.0)37.1(8)37.1(737.1 23 =−+−=y

 22

(a) Using 3-digits with chopping

1.373 → 2.571353 → 2.57

–7(1.37)2 → –7(1.87) → –13.0

8(1.37) → 10.96 → 10.9

 – 0.35

 –0.12

This represents an error of

%7.178
043053.0

12.0043053.0
=

−
=tε

(b) Using 3-digits with chopping

35.037.1)837.1)737.1((−+−=y

35.037.1)837.163.5(−+×−=y

35.037.1)871.7(−+−=y

35.037.129.0 −×=y

35.0397.0 −=y

047.0=y

This represents an error of

%2.9
043053.0

47.0043053.0
=

−
=tε

Hence, the second form is superior because it tends to minimize round-off error.

4.3 (a) For this case, xi = 0 and h = x. Thus, the Taylor series is

⋅⋅⋅++= +
!3

)0(
+

!2

)0("
)0(')0()(3

)3(
2 x

f
x

f
xffxf

For the exponential function,

1)0()0(")0(')0()3(==== ffff

Substituting these values yields,

 23

⋅⋅⋅++= +
!3

1
+

!2

1
1)(32 xxxxf

which is the Maclaurin series expansion.

(b) The true value is e–1 = 0.367879 and the step size is h = xi+1 – xi = 1 – 0.25 = 0.75. The

complete Taylor series to the third-order term is

!32
)(

32

1

h
e

h
eheexf iiii xxxx

i
−−−−

+ −+−=

Zero-order approximation:

778801.0)1(25.0 == −ef

%7.111%100
367879.0

778801.0367879.0
=

−
=tε

First-order approximation:

1947.0)75.0(778801.0778801.0)1(=−=f

%1.47%100
367879.0

1947.0367879.0
=

−
=tε

Second-order approximation:

413738.0
2

75.0
778801.0)75.0(778801.0778801.0)1(

2

=+−=f

%5.12%100
367879.0

413738.0367879.0
=

−
=tε

Third-order approximation:

358978.0
6

75.0
778801.0

2

75.0
778801.0)75.0(778801.0778801.0)1(

32

=−+−=f

%42.2%100
367879.0

358978.0367879.0
=

−
=tε

4.4 Use εs = 0.5×102–2 = 0.5%. The true value = cos(π/4) = 0.707107…

zero-order:

 24

1
4

cos ≅⎟
⎠
⎞

⎜
⎝
⎛ π

%42.41%100
707107.0

1707107.0
=

−
=tε

first-order:

691575.0
2

)4/(
1

4
cos

2

=−≅⎟
⎠
⎞

⎜
⎝
⎛ ππ

%6.44%100
691575.0

1691575.0

%19.2%100
707107.0

691575.0707107.0

=
−

=

=
−

=

a

t

ε

ε

second-order:

707429.0
24

)4/(
691575.0

4
cos

4

=+≅⎟
⎠
⎞

⎜
⎝
⎛ ππ

%24.2%100
707429.0

691575.0707429.0

%456.0%100
707107.0

707429.0707107.0

=
−

=

=
−

=

a

t

ε

ε

third-order:

707103.0
720

)4/(
707429.0

4
cos

6

=−≅⎟
⎠
⎞

⎜
⎝
⎛ ππ

%046.0%100
707103.0

707429.0707103.0

%0005.0%100
707107.0

707103.0707107.0

=
−

=

=
−

=

a

t

ε

ε

Because εa < 0.5%, we can terminate the computation.

4.5 Use εs = 0.5×102–2 = 0.5%. The true value = sin(π/4) = 0.707107…

zero-order:

 25

785398.0
4

sin ≅⎟
⎠
⎞

⎜
⎝
⎛ π

%1.11%100
707107.0

785398.0707107.0
=

−
=tε

first-order:

704653.0
6

)4/(
785398.0

4
sin

3

=−≅⎟
⎠
⎞

⎜
⎝
⎛ ππ

%46.11%100
704653.0

785398.0704653.0

%347.0%100
707107.0

704653.0707107.0

=
−

=

=
−

=

a

t

ε

ε

second-order:

707143.0
120

)4/(
704653.0

4
sin

5

=+≅⎟
⎠
⎞

⎜
⎝
⎛ ππ

%352.0%100
707143.0

704653.0707143.0

%0051.0%100
707107.0

707143.0707107.0

=
−

=

=
−

=

a

t

ε

ε

Because εa < 0.5%, we can terminate the computation.

4.6 The true value is f(2) = 102.

zero order:

%8.160%100
102

)62(102
 62)1()2(=

−−
=−== tff ε

first order:

%1.92%100
102

8102
 8)1(7062)2(

707)1(12)1(75)1(' 2

=
−

==+−=

=+−=

tf

f

ε

second order:

 26

%5.24%100
102

77102
 77)1(

2

138
8)2(

13812)1(150)1("

2 =
−

==+=

=−=

tf

f

ε

third order:

%0.0%100
102

102102
 102)1(

6

150
77)2(

150)1(

3

)3(

=
−

==+=

=

tf

f

ε

Because we are working with a third-order polynomial, the error is zero. This is due to the

fact that cubics have zero fourth and higher derivatives.

4.7 The true value is ln(3) = 1.098612

zero order:

%100%100
098612.1

0098612.1
 0)1()3(=

−
=== tff ε

first order:

%05.82%100
098612.1

2098612.1
 2)2(10)3(

1)1('
1

)('

=
−

==+=

==

tf

f
x

xf

ε

second order:

%100%100
098612.1

0098612.1
 0

2

2
12)3(

1)1("
1

)("

2

2

=
−

==−=

−=−=

tf

f
x

xf

ε

third order:

%7.142%100
098612.1

66667.2098612.1
 66667.2

6

2
20)3(

2)1("
2

)(

3

3

)3(

=
−

==+=

==

tf

f
x

xf

ε

fourth order:

 27

%4.221%100
098612.1

)33333.1(098612.1
 33333.1

24

2
666666.2)3(

6)1(
6

)(

4

)4(

4

)4(

=
−−

=−=−=

−=−=

tf

f
x

xf

ε

The series is diverging. A smaller step size is required to obtain convergence.

4.8 The first derivative of the function at x = 2 can be evaluated as

2837)2(12)2(75)2(' 2 =+−=f

The points needed to form the finite divided differences can be computed as

xi–1 = 1.75 f(xi–1) = 39.85938

xi = 2.0 f(xi) = 102

xi+1 = 2.25 f(xi+1) = 182.1406

forward:

5625.375625.320283 5625.320
25.0

1021406.182
)2(' =−==

−
= tEf

backward:

4375.345625.248283 5625.248
25.0

85938.39102
)2(' =−==

−
= tEf

centered:

5625.15625.284283 5625.284
5.0

85938.391406.182
)2(' −=−==

−
= tEf

Both the forward and backward differences should have errors approximately equal to

h
xf

E i
t

2

)("
≈

The second derivative can be evaluated as

28812)2(150)2(" =−=f

Therefore,

3625.0
2

288
=≈tE

which is similar in magnitude to the computed errors.

 28

For the central difference,

2
)3(

6

)(
h

xf
E i

t −≈

The third derivative of the function is 150 and

5625.1)25.0(
6

150 2 −=−≈tE

which is exact. This occurs because the underlying function is a cubic equation that has zero

fourth and higher derivatives.

4.9 The second derivative of the function at x = 2 can be evaluated as

28812)2(150)2(' =−=f

For h = 0.2,

288
)2.0(

96.50)102(256.164
)2("

2
=

+−
=f

For h = 0.1,

288
)1.0(

115.75)102(2765.131
)2("

2
=

+−
=f

Both are exact because the errors are a function of fourth and higher derivatives which are

zero for a 3rd-order polynomial.

4.10 Use εs = 0.5×102–2 = 0.5%. The true value = 1/(1 – 0.1) = 1.11111…

zero-order:

1
1.01

1
≅

−

%10%100
11111.1

111111.1
=

−
=tε

first-order:

1.11.01
1.01

1
=+≅

−

 29

%0909.9%100
1.1

11.1

%1%100
11111.1

1.111111.1

=
−

=

=
−

=

a

t

ε

ε

second-order:

11.101.01.01
1.01

1
=++≅

−

%9009.0%100
11.1

1.111.1

%1.0%100
11111.1

11.111111.1

=
−

=

=
−

=

a

t

ε

ε

third-order:

111.1001.001.01.01
1.01

1
=+++≅

−

%090009.0%100
111.1

11.1111.1

%01.0%100
11111.1

111.111111.1

=
−

=

=
−

=

a

t

ε

ε

The approximate error has fallen below 0.5% so the computation can be terminated.

4.11 Here are the function and its derivatives

xxf

xxf

xxf

xxf

xxxf

sin
2

1
)(

cos
2

1
)(

sin
2

1
)("

cos
2

1
1)('

sin
2

1
1)(

)4(

)3(

−=

=

=

−=

−−=

 30

Using the Taylor Series expansion, we obtain the following 1st, 2nd, 3rd, and 4th order Taylor

Series functions shown below in the MATLAB program−f1, f2, and f4. Note the 2nd and

3rd order Taylor Series functions are the same.

From the plots below, we see that the answer is the 4th Order Taylor Series expansion.

x=0:0.001:3.2;

f=x-1-0.5*sin(x);

subplot(2,2,1);

plot(x,f);grid;title('f(x)=x-1-0.5*sin(x)');hold on

f1=x-1.5;

e1=abs(f-f1); %Calculates the absolute value of the

difference/error

subplot(2,2,2);

plot(x,e1);grid;title('1st Order Taylor Series Error');

f2=x-1.5+0.25.*((x-0.5*pi).^2);

e2=abs(f-f2);

subplot(2,2,3);

plot(x,e2);grid;title('2nd/3rd Order Taylor Series Error');

f4=x-1.5+0.25.*((x-0.5*pi).^2)-(1/48)*((x-0.5*pi).^4);

e4=abs(f4-f);

subplot(2,2,4);

plot(x,e4);grid;title('4th Order Taylor Series Error');hold off

0 1 2 3 4
-1

0

1

2

3

f(x)=x-1-0.5*sin(x)

0 1 2 3 4
0

0.2

0.4

0.6

0.8

1st Order Taylor Series Error

0 1 2 3 4
0

0.05

0.1

0.15

0.2

2nd/3rd Order Taylor Series Error

0 1 2 3 4
0

0.005

0.01

0.015

4th Order Taylor Series Error

 31

4.12
x f(x) f(x-1) f(x+1) f'(x)-Theory f'(x)-Back f'(x)-Cent f'(x)-Forw

-2.000 0.000 -2.891 2.141 10.000 11.563 10.063 8.563

-1.750 2.141 0.000 3.625 7.188 8.563 7.250 5.938

-1.500 3.625 2.141 4.547 4.750 5.938 4.813 3.688

-1.250 4.547 3.625 5.000 2.688 3.688 2.750 1.813

-1.000 5.000 4.547 5.078 1.000 1.813 1.063 0.313

-0.750 5.078 5.000 4.875 -0.313 0.313 -0.250 -0.813

-0.500 4.875 5.078 4.484 -1.250 -0.813 -1.188 -1.563

-0.250 4.484 4.875 4.000 -1.813 -1.563 -1.750 -1.938

0.000 4.000 4.484 3.516 -2.000 -1.938 -1.938 -1.938

0.250 3.516 4.000 3.125 -1.813 -1.938 -1.750 -1.563

0.500 3.125 3.516 2.922 -1.250 -1.563 -1.188 -0.813

0.750 2.922 3.125 3.000 -0.313 -0.813 -0.250 0.313

1.000 3.000 2.922 3.453 1.000 0.313 1.063 1.813

1.250 3.453 3.000 4.375 2.688 1.813 2.750 3.688

1.500 4.375 3.453 5.859 4.750 3.688 4.813 5.938

1.750 5.859 4.375 8.000 7.188 5.938 7.250 8.563

2.000 8.000 5.859 10.891 10.000 8.563 10.063 11.563

First Derivative Approximations Compared to Theoretical

-4.0

-2.0

0.0

2.0

4.0

6.0

8.0

10.0

12.0

14.0

-2.5 -2.0 -1.5 -1.0 -0.5 0.0 0.5 1.0 1.5 2.0 2.5

x-values

f'
(x

)

Theoretical

Backward

Centered

Forward

x f(x) f(x-1) f(x+1) f(x-2) f(x+2) f''(x)-

Theory

f''(x)-

Back

f''(x)-Cent f''(x)-

Forw

-2.000 0.000 -2.891 2.141 3.625 3.625 -12.000 150.500 -12.000 -10.500

-1.750 2.141 0.000 3.625 -2.891 4.547 -10.500 -12.000 -10.500 -9.000

-1.500 3.625 2.141 4.547 0.000 5.000 -9.000 -10.500 -9.000 -7.500

-1.250 4.547 3.625 5.000 2.141 5.078 -7.500 -9.000 -7.500 -6.000

-1.000 5.000 4.547 5.078 3.625 4.875 -6.000 -7.500 -6.000 -4.500

-0.750 5.078 5.000 4.875 4.547 4.484 -4.500 -6.000 -4.500 -3.000

-0.500 4.875 5.078 4.484 5.000 4.000 -3.000 -4.500 -3.000 -1.500

-0.250 4.484 4.875 4.000 5.078 3.516 -1.500 -3.000 -1.500 0.000

0.000 4.000 4.484 3.516 4.875 3.125 0.000 -1.500 0.000 1.500

0.250 3.516 4.000 3.125 4.484 2.922 1.500 0.000 1.500 3.000

 32

0.500 3.125 3.516 2.922 4.000 3.000 3.000 1.500 3.000 4.500

0.750 2.922 3.125 3.000 3.516 3.453 4.500 3.000 4.500 6.000

1.000 3.000 2.922 3.453 3.125 4.375 6.000 4.500 6.000 7.500

1.250 3.453 3.000 4.375 2.922 5.859 7.500 6.000 7.500 9.000

1.500 4.375 3.453 5.859 3.000 8.000 9.000 7.500 9.000 10.500

1.750 5.859 4.375 8.000 3.453 10.891 10.500 9.000 10.500 12.000

2.000 8.000 5.859 10.891 4.375 14.625 12.000 10.500 12.000 13.500

Approximations of the 2nd Derivative

-15.0

-10.0

-5.0

0.0

5.0

10.0

15.0

-2.5 -2.0 -1.5 -1.0 -0.5 0.0 0.5 1.0 1.5 2.0 2.5

x-values

f'
'(

x
)

f''(x)-Theory

f''(x)-Backward

f''(x)-Centered

f''(x)-Forward

4.13

function eps = macheps

% determines the machine epsilon

e = 1;

while e+1>1

 e = e/2;

end

eps = 2*e;

>> macheps

ans =

 2.2204e-016

>> eps

ans =

 2.2204e-016

 33

CHAPTER 5

5.1 The function to evaluate is

)(tanh)(tvt
m

gc

c

gm
cf d

d

d −⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
=

or substituting the given values

364
80

81.9
tanh

)80(81.9
)(−⎟

⎟
⎠

⎞
⎜
⎜
⎝

⎛
= d

d

d

c

c
cf

The first iteration is

15.0
2

2.01.0
=

+
=rx

175944.0)204516.0(860291.0)15.0()1.0(−=−=ff

Therefore, the root is in the first interval and the upper guess is redefined as xu = 0.15. The

second iteration is

125.0
2

15.01.0
=

+
=rx

%20%100
125.0

15.0125.0
=

−
=aε

273923.0)318407.0(860291.0)125.0()1.0(==ff

Therefore, the root is in the second interval and the lower guess is redefined as xu = 0.125.

The remainder of the iterations are displayed in the following table:

i xl f(xl) xu f(xu) xr f(xr) |εa|
1 0.1 0.86029 0.2 −1.19738 0.15 −0.20452

2 0.1 0.86029 0.15 −0.20452 0.125 0.31841 20.00%

3 0.125 0.31841 0.15 −0.20452 0.1375 0.05464 9.09%

4 0.1375 0.05464 0.15 −0.20452 0.14375 −0.07551 4.35%

5 0.1375 0.05464 0.14375 −0.07551 0.140625 −0.01058 2.22%

6 0.1375 0.05464 0.140625 −0.01058 0.1390625 0.02199 1.12%

Thus, after six iterations, we obtain a root estimate of 0.1390625 with an approximate error of

1.12%.

5.2
function root = bisectnew(func,xl,xu,Ead)

% bisectnew(xl,xu,es,maxit):

 34

% uses bisection method to find the root of a function

% with a fixed number of iterations to attain

% a prespecified tolerance

% input:

% func = name of function

% xl, xu = lower and upper guesses

% Ead = (optional) desired tolerance (default = 0.000001)

% output:

% root = real root

if func(xl)*func(xu)>0 %if guesses do not bracket a sign change

 error('no bracket') %display an error message and terminate

end

% if necessary, assign default values

if nargin<4, Ead = 0.000001; end %if Ead blank set to 0.000001

% bisection

xr = xl;

% compute n and round up to next highest integer

n = round(1 + log2((xu - xl)/Ead) + 0.5);

for i = 1:n

 xrold = xr;

 xr = (xl + xu)/2;

 if xr ~= 0, ea = abs((xr - xrold)/xr) * 100; end

 test = func(xl)*func(xr);

 if test < 0

 xu = xr;

 elseif test > 0

 xl = xr;

 else

 ea = 0;

 end

end

root = xr;

The following is a MATLAB session that uses the function to solve Prob. 5.1 with Ea,d =

0.0001.

>> fcd = inline('sqrt(9.81*80/cd)*tanh(sqrt(9.81*cd/80)*4)-36','cd')

fcd =

 Inline function:

 fcd(cd) = sqrt(9.81*80/cd)*tanh(sqrt(9.81*cd/80)*4)-36

>> format long

>> bisectnew(fcd,0.1,0.2,0.0001)

ans =

 0.14008789062500

5.3 The function to evaluate is

364
80

81.9
tanh

)80(81.9
)(−⎟

⎟
⎠

⎞
⎜
⎜
⎝

⎛
= d

d

d

c

c
cf

 35

The first iteration is

141809.0
)19738.1(86029.0

)2.01.0(19738.1
2.0 =

−−
−−

−=rx

030292.0)03521.0(860291.0)141809.0()1.0(−=−=ff

Therefore, the root is in the first interval and the upper guess is redefined as xu = 0.141809.

The second iteration is

140165.0
)03521.0(86029.0

)141809.01.0(03521.0
141809.0 =

−−
−−

−=rx

%17.1%100
140165.0

141809.0140165.0
=

−
=aε

Therefore, after only two iterations we obtain a root estimate of 0.140165 with an

approximate error of 1.17% which is below the stopping criterion of 2%.

5.4
function root = falsepos(func,xl,xu,es,maxit)

% falsepos(xl,xu,es,maxit):

% uses the false position method to find the root

% of the function func

% input:

% func = name of function

% xl, xu = lower and upper guesses

% es = (optional) stopping criterion (%) (default = 0.001)

% maxit = (optional) maximum allowable iterations (default = 50)

% output:

% root = real root

if func(xl)*func(xu)>0 %if guesses do not bracket a sign change

 error('no bracket') %display an error message and terminate

end

% default values

if nargin<5, maxit=50; end

if nargin<4, es=0.001; end

% false position

iter = 0;

xr = xl;

while (1)

 xrold = xr;

 xr = xu - func(xu)*(xl - xu)/(func(xl) - func(xu));

 iter = iter + 1;

 if xr ~= 0, ea = abs((xr - xrold)/xr) * 100; end

 test = func(xl)*func(xr);

 if test < 0

 xu = xr;

 elseif test > 0

 xl = xr;

 else

 ea = 0;

 36

 end

 if ea <= es | iter >= maxit, break, end

end

root = xr;

The following is a MATLAB session that uses the function to solve Prob. 5.1:

>> fcd = inline('sqrt(9.81*80/cd)*tanh(sqrt(9.81*cd/80)*4)-36','cd')

fcd =

 Inline function:

 fcd(cd) = sqrt(9.81*80/cd)*tanh(sqrt(9.81*cd/80)*4)-36

>> format long

>> falsepos(fcd,0.1,0.2,2)

ans =

 0.14016503741282

5.5 Solve for the reactions:

R1 = 265 lbs. R2 = 285 lbs.

Write beam equations:

0<x<3
3

2

55.5265)1(

0265
3

)667.16(

xM

x
x

xM

−=

=−+

3<x<6

15041550)2(

0265))3(
3

2
(150)

2

3
)(3(100

2 −+−=

=−−+
−

−+

xxM

xx
x

xM

6<x<10

1650185)3(

265)5.4(300))3(
3

2
(150

+−=

−−+−=

xM

xxxM

10<x<12
1200100)4(

0)12(100

−=
=−+

xM

xM

Combining Equations:

Because the curve crosses the axis between 6 and 10, use (3).

(3) 1650185 +−= xM

Set 10;6 == UL xx

 37

200)(

540)(L

−=
=

UxM

xM
 8

2
=

+
= UL

r

xx
x

LR xreplacesxM →= 170)(

200)(

170)(L

−=
=

UxM

xM
 9

2

108
=

+
=rx

UR xreplacesxM →−= 15)(

15)(

170)(L

−=
=

UxM

xM
 5.8

2

98
=

+
=rx

LR xreplacesxM →= 5.77)(

15)(

5.77)(L

−=
=

UxM

xM
 75.8

2

95.8
=

+
=rx

LR xreplacesxM →= 25.31)(

15)(

25.31)(L

−=
=

UxM

xM
 875.8

2

975.8
=

+
=rx

LR xreplacesxM →= 125.8)(

15)(

125.8)(L

−=
=

UxM

xM
 9375.8

2

9875.8
=

+
=rx

UR xreplacesxM →−= 4375.3)(

4375.3)(

125.8)(L

−=
=

UxM

xM
 90625.8

2

9375.8875.8
=

+
=rx

LR xreplacesxM →= 34375.2)(

4375.3)(

34375.2)(L

−=
=

UxM

xM
 921875.8

2

9375.890625.8
=

+
=rx

UR xreplacesxM →−= 546875.0)(

546875.0)(

34375.2)(L

−=
=

UxM

xM
 9140625.8

2

921875.890625.8
=

+
=rx

8984.0)(R =xM Therefore, feetx 91.8=

5.6 (a) The graph can be generated with MATLAB

>> x=[-1:0.1:6];

 38

>> f=-12-21*x+18*x.^2-2.75*x.^3;

>> plot(x,f)

>> grid

This plot indicates that roots are located at about –0.4, 2.25 and 4.7.

(b) Using bisection, the first iteration is

5.0
2

01
−=

+−
=rx

47656.99)34375.3(75.29)5.0()1(==−− ff

Therefore, the root is in the second interval and the lower guess is redefined as xl = –0.5. The

second iteration is

25.0
2

05.0
−=

+−
=rx

%100%100
25.0

)5.0(25.0
=

−
−−−

=aε

66492.18)5820313.5(34375.3)25.0()5.0(−=−=−− ff

Therefore, the root is in the first interval and the upper guess is redefined as xu = –0.25. The

remainder of the iterations are displayed in the following table:

i xl f(xl) xu f(xu) xr f(xr) |εa|
1 −1 29.75 0 −12 −0.5 3.34375

2 −0.5 3.34375 0 −12 −0.25 −5.5820313 100.00%

3 −0.5 3.34375 −0.25 −5.5820313 −0.375 −1.4487305 33.33%

 39

4 −0.5 3.34375 −0.375 −1.4487305 −0.4375 0.8630981 14.29%

5 −0.4375 0.863098 −0.375 −1.4487305 −0.40625 −0.3136673 7.69%

6 −0.4375 0.863098 −0.40625 −0.3136673 −0.421875 0.2694712 3.70%

7 −0.42188 0.269471 −0.40625 −0.3136673 −0.414063 −0.0234052 1.89%

8 −0.42188 0.269471 −0.41406 −0.0234052 −0.417969 0.1227057 0.93%

Thus, after eight iterations, we obtain a root estimate of −0.417969 with an approximate error

of 0.93%, which is below the stopping criterion of 1%.

(c) Using false position, the first iteration is

287425.0
)12(75.29

)01(12
0 −=

−−
−−−

−=rx

2491.131)4117349.4(75.29)287425.0()1(−=−=−− ff

Therefore, the root is in the first interval and the upper guess is redefined as xu = –0.287425.

The second iteration is

3794489.0
)4117349.4(75.29

))287425.0(1(4117349.4
287425.0 −=

−−
−−−−

−−=rx

%25.24%100
3794489.0

)2874251.0(3794489.0
=

−
−−−

=aε

3675.38)2896639.1(75.29)3794489.0()1(−=−=−− ff

Therefore, the root is in the first interval and the upper guess is redefined as xu = –0.379449.

The remainder of the iterations are displayed in the following table:

i xl f(xl) xu f(xu) xr f(xr) |εa|
1 −1 29.75 0 −12 −0.287425 −4.4117349

2 −1 29.75 −0.28743 −4.4117349 −0.379449 −1.2896639 24.25%

3 −1 29.75 −0.37945 −1.2896639 −0.405232 −0.3512929 6.36%

4 −1 29.75 −0.40523 −0.3512929 −0.412173 −0.0938358 1.68%

5 −1 29.75 −0.41217 −0.0938358 −0.414022 −0.0249338 0.45%

Therefore, after five iterations we obtain a root estimate of –0.414022 with an approximate

error of 0.45%, which is below the stopping criterion of 1%.

5.7 A graph of the function can be generated with MATLAB

>> x=[-0.5:0.1:1.5];

>> f=sin(x)-x.^2;

>> plot(x,f)

>> grid

 40

This plot indicates that a nontrivial root (i.e., nonzero) is located at about 0.85.

Using bisection, the first iteration is

75.0
2

15.0
=

+
=rx

027333.0)1191388.0(229426.0)75.0()5.0(==ff

Therefore, the root is in the second interval and the lower guess is redefined as xl = 0.75. The

second iteration is

875.0
2

175.0
=

+
=rx

%29.14%100
875.0

75.0875.0
=

−
=aε

000229.0)0019185.0(119139.0)875.0()75.0(==ff

Because the product is positive, the root is in the second interval and the lower guess is

redefined as xl = 0.875. The remainder of the iterations are displayed in the following table:

i xl f(xl) xu f(xu) xr f(xr) |εa|
1 0.5 0.229426 1 −0.158529 0.75 0.1191388

2 0.75 0.119139 1 −0.158529 0.875 0.0019185 14.29%

3 0.875 0.001919 1 −0.158529 0.9375 −0.0728251 6.67%

4 0.875 0.001919 0.9375 −0.0728251 0.90625 −0.0340924 3.45%

5 0.875 0.001919 0.90625 −0.0340924 0.890625 −0.0157479 1.75%

 41

Therefore, after five iterations we obtain a root estimate of 0.890625 with an approximate

error of 1.75%, which is below the stopping criterion of 2%.

5.8 (a) A graph of the function indicates a positive real root at approximately x = 1.4.

-12

-10

-8

-6

-4

-2

0

2

-3 -2 -1 0 1 2 3

(b) Using bisection, the first iteration is

25.1
2

25.0
=

+
=rx

52932.0)2537129.0(08629.2)25.1()5.0(=−−=ff

Therefore, the root is in the second interval and the lower guess is redefined as xl = 1.25. The

second iteration is

625.1
2

225.1
=

+
=rx

%08.23%100
625.1

25.1625.1
=

−
=aε

06876.0)2710156.0(253713.0)625.1()25.1(−=−=ff

Therefore, the root is in the first interval and the upper guess is redefined as xu = 1.625. The

remainder of the iterations are displayed in the following table:

i xl f(xl) xu f(xu) xr f(xr) |εa|
1 0.5 −2.08629 2 0.6862944 1.25 −0.2537129

2 1.25 −0.25371 2 0.6862944 1.625 0.2710156 23.08%

3 1.25 −0.25371 1.625 0.2710156 1.4375 0.025811 13.04%

 42

Thus, after three iterations, we obtain a root estimate of 1.4375 with an approximate error of

13.04%.

(c) Using false position, the first iteration is

628707.1
6862944.0086294.2

)25.0(6862944.0
2 =

−−
−

−=rx

574927.0)2755734.0(086294.2)628707.1()5.0(−=−=ff

Therefore, the root is in the first interval and the upper guess is redefined as xu = 1.628707.

The second iteration is

4970143.1
2755734.0086294.2

)628707.15.0(4970143.1
0.2755734 =

−−
−

−=rx

%8.8%100
4970143.1

6287074.14970143.1
=

−
=aε

223119.0)1069453.0(086294.2)4970143.1()5.0(−=−=ff

Therefore, the root is in the first interval and the upper guess is redefined as xu = 1.497014.

The remainder of the iterations are displayed in the following table:

i xl f(xl) xu f(xu) xr f(xr) |εa|
1 0.5 −2.08629 2 0.6862944 1.6287074 0.2755734

2 0.5 −2.08629 1.628707 0.2755734 1.4970143 0.1069453 8.80%

3 0.5 −2.08629 1.497014 0.1069453 1.4483985 0.040917 3.36%

Therefore, after three iterations we obtain a root estimate of 1.4483985 with an approximate

error of 3.36%.

5.9 (a) Equation (5.6) can be used to determine the number of iterations

45121.10
05.0

35
log1log1 2

,

0

2 =⎟
⎠
⎞

⎜
⎝
⎛+=⎟

⎟
⎠

⎞
⎜
⎜
⎝

⎛ ∆
+=

daE

x
n

which can be rounded up to 11 iterations.

(b) Here is an M-file that evaluates the temperature in oC using 11 iterations of bisection

based on a given value of the oxygen saturation concentration in freshwater:

function TC = TempEval(osf)

% function to evaluate the temperature in degrees C based

% on the oxygen saturation concentration in freshwater (osf).

xl = 0 + 273.15;

xu = 35 + 273.15;

if fTa(xl,osf)*fTa(xu,osf)>0 %if guesses do not bracket

 error('no bracket') %display an error message and terminate

 43

end

xr = xl;

for i = 1:11

 xrold = xr;

 xr = (xl + xu)/2;

 if xr ~= 0, ea = abs((xr - xrold)/xr) * 100; end

 test = fTa(xl,osf)*fTa(xr,osf);

 if test < 0

 xu = xr;

 elseif test > 0

 xl = xr;

 else

 ea = 0;

 end

end

TC = xr - 273.15;

end

function f = fTa(Ta, osf)

f = -139.34411 + 1.575701e5/Ta - 6.642308e7/Ta^2;

f = f + 1.2438e10/Ta^3 - 8.621949e11/Ta^4;

f = f - log(osf);

The function can be used to evaluate the test cases:

>> TempEval(8)

ans =

 26.7798

>> TempEval(10)

ans =

 15.3979

>> TempEval(14)

ans =

 1.5552

5.10 (a) The function to be evaluated is

)3(
)2/3(81.9

400
1)(

32
y

yy
yf +

+
−=

A graph of the function indicates a positive real root at approximately 1.5.

 44

-40

-30

-20

-10

0

10

0 0.5 1 1.5 2 2.5

(b) Using bisection, the first iteration is

5.1
2

5.25.0
=

+
=rx

998263.0)030946.0(2582.32)5.1()5.0(=−−=ff

Therefore, the root is in the second interval and the lower guess is redefined as xl = 1.5. The

second iteration is

2
2

5.25.1
=

+
=rx

%25%100
2

5.12
=

−
=aε

018624.0)601809.0(030946.0)2()5.1(−=−=ff

Therefore, the root is in the first interval and the upper guess is redefined as xu = 2. The

remainder of the iterations are displayed in the following table:

i xl f(xl) xu f(xu) xr f(xr) |εa|
1 0.5 −32.2582 2.5 0.813032 1.5 −0.030946

2 1.5 −0.03095 2.5 0.813032 2 0.601809 25.00%

3 1.5 −0.03095 2 0.601809 1.75 0.378909 14.29%

4 1.5 −0.03095 1.75 0.378909 1.625 0.206927 7.69%

5 1.5 −0.03095 1.625 0.206927 1.5625 0.097956 4.00%

6 1.5 −0.03095 1.5625 0.097956 1.53125 0.036261 2.04%

7 1.5 −0.03095 1.53125 0.036261 1.515625 0.003383 1.03%

8 1.5 −0.03095 1.515625 0.003383 1.5078125 −0.013595 0.52%

 45

After eight iterations, we obtain a root estimate of 1.5078125 with an approximate error of

0.52%.

(c) Using false position, the first iteration is

45083.2
81303.02582.32

)5.25.0(81303.0
5.2 =

−−
−

−=rx

80248.25)79987.0(25821.32)45083.2()5.0(−=−=ff

Therefore, the root is in the first interval and the upper guess is redefined as xu = 2.45083.

The second iteration is

40363.2
79987.025821.32

)45083.25.0(79987.0
45083.2 =

−−
−

−=rx

%96.1%100
40363.2

45083.240363.2
=

−
=aε

35893.25)78612.0(2582.32)40363.2()5.0(−=−=ff

The root is in the first interval and the upper guess is redefined as xu = 2.40363. The

remainder of the iterations are displayed in the following table:

i xl f(xl) xu f(xu) xr f(xr) |εa|
1 0.5 −32.2582 2.50000 0.81303 2.45083 0.79987

2 0.5 −32.2582 2.45083 0.79987 2.40363 0.78612 1.96%

3 0.5 −32.2582 2.40363 0.78612 2.35834 0.77179 1.92%

4 0.5 −32.2582 2.35834 0.77179 2.31492 0.75689 1.88%

5 0.5 −32.2582 2.31492 0.75689 2.27331 0.74145 1.83%

6 0.5 −32.2582 2.27331 0.74145 2.23347 0.72547 1.78%

7 0.5 −32.2582 2.23347 0.72547 2.19534 0.70900 1.74%

8 0.5 −32.2582 2.19534 0.70900 2.15888 0.69206 1.69%

9 0.5 −32.2582 2.15888 0.69206 2.12404 0.67469 1.64%

10 0.5 −32.2582 2.12404 0.67469 2.09077 0.65693 1.59%

After ten iterations we obtain a root estimate of 2.09077 with an approximate error of 1.59%.

Thus, after ten iterations, the false position method is converging at a very slow pace and is

still far from the root in the vicinity of 1.5 that we detected graphically.

Discussion: This is a classic example of a case where false position performs poorly and is

inferior to bisection. Insight into these results can be gained by examining the plot that was

developed in part (a). This function violates the premise upon which false position was

based−that is, if f(xu) is much closer to zero than f(xl), then the root is closer to xu than to xl

(recall Fig. 5.8). Because of the shape of the present function, the opposite is true.

 46

CHAPTER 6

6.1 The function can be set up for fixed-point iteration by solving it for x

()ii xx sin1 =+

Using an initial guess of x0 = 0.5, the first iteration yields

() 649637.05.0sin1 ==x

%23%100
649637.0

5.0649637.0
=×

−
=aε

Second iteration:

() 721524.0649637.0sin2 ==x

%96.9%100
721524.0

649637.0721524.0
=×

−
=aε

The process can be continued as tabulated below:

iteration xi |εa|
0 0.500000

1 0.649637 23.0339%

2 0.721524 9.9632%

3 0.750901 3.9123%

4 0.762097 1.4691%

5 0.766248 0.5418%

6 0.767772 0.1984%

7 0.768329 0.0725%

8 0.768532 0.0265%

9 0.768606 0.0097%

Thus, after nine iterations, the root is estimated to be 0.768606 with an approximate error

of 0.0097%.

6.2 (a) The function can be set up for fixed-point iteration by solving it for x in two different

ways. First, it can be solved for the linear x,

7.1

5.29.0 2

1

−
=+

i
i

x
x

Using an initial guess of 5, the first iteration yields

 47

76.11
7.1

5.2)5(9.0 2

1 =
−

=x

%5.57%100
76.11

576.11
=×

−
=aε

Second iteration:

8.71
7.1

5.2)76.11(9.0 2

1 =
−

=x

%6.83%100
8.71

76.118.71
=×

−
=aε

Clearly, this solution is diverging.

An alternative is to solve for the second-order x,

9.0

5.27.1
1

+
=+

i
i

x
x

Using an initial guess of 5, the first iteration yields

496.3
9.0

5.2)5(7.1
1 =

+
=+ix

%0.43%100
496.3

5496.3
=×

−
=aε

Second iteration:

0629.3
9.0

5.2)496.3(7.1
1 =

+
=+ix

%14.14%100
0629.3

496.30629.3
=×

−
=aε

This version is converging. All the iterations can be tabulated as

iteration xi |εa|
0 5.000000

1 3.496029 43.0194%

2 3.062905 14.1410%

3 2.926306 4.6680%

4 2.881882 1.5415%

5 2.867287 0.5090%

 48

6 2.862475 0.1681%

7 2.860887 0.0555%

8 2.860363 0.0183%

9 2.860190 0.0061%

Thus, after 9 iterations, the root estimate is 2.860190 with an approximate error of

0.0061%. The result can be checked by substituting it back into the original function,

000294.05.2)860190.2(7.1)860190.2(9.0)860190.2(2 −=++−=f

(b) The formula for Newton-Raphson is

7.18.1

5.27.19.0 2

1 +−
++−

−=+
i

ii
ii

x

xx
xx

Using an initial guess of 5, the first iteration yields

424658.3
7.1)5(8.1

5.2)5(7.1)5(9.0
5

2

1 =
+−

++−
−=+ix

%0.46%100
424658.3

5424658.3
=×

−
=aε

Second iteration:

924357.2
7.1)424658.3(8.1

5.2)424658.3(7.1)424658.3(9.0
424658.3

2

1 =
+−

++−
−=+ix

%1.17%100
924357.2

424658.3924357.2
=×

−
=aε

The process can be continued as tabulated below:

iteration xi f(xi) f'(xi) |εa|
0 5 −11.5 −7.3

1 3.424658 −2.23353 −4.46438 46.0000%

2 2.924357 −0.22527 −3.56384 17.1081%

3 2.861147 −0.00360 −3.45006 2.2093%

4 2.860105 −9.8E−07 −3.44819 0.0364%

5 2.860104 −7.2E−14 −3.44819 0.0000%

After 5 iterations, the root estimate is 2.860104 with an approximate error of 0.0000%. The

result can be checked by substituting it back into the original function,

142 102.75.2)860104.2(7.1)860104.2(9.0)860104.2(−×−=++−=f

 49

6.3 (a)

>> x = linspace(0,4);

>> y = x.^3-6*x.^2+11*x-6.1;

>> plot(x,y)

>> grid

Estimates are approximately 1.05, 1.9 and 3.05.

(b) The formula for Newton-Raphson is

11123

1.6116
2

23

1 +−

−+−
−=+

ii

iii
ii

xx

xxx
xx

Using an initial guess of 3.5, the first iteration yields

191304.3
11)5.3(12)5.3(3

1.6)5.3(11)5.3(6)5.3(
5.3

2

23

1 =
+−

−+−
−=x

%673.9%100
191304.3

5.3191304.3
=×

−
=aε

Second iteration:

068699.3
11)191304.3(12)191304.3(3

1.6)191304.3(11)191304.3(6)191304.3(
191304.3

2

23

2 =
+−

−+−
−=x

%995.3%100
068699.3

191304.3068699.3
=×

−
=aε

 50

Third iteration:

047317.3
11)068699.3(12)068699.3(3

1.6)068699.3(11)068699.3(6)068699.3(
068699.3

2

23

3 =
+−

−+−
−=x

%702.0%100
047317.3

068699.3047317.3
=×

−
=aε

(c) For the secant method, the first iteration:

x−1 = 2.5 f(x−1) = −0.475

x0 = 3.5 f(x0) = 1.775

711111.2
775.1475.0

)5.35.2(775.1
5.31 =

−−
−

−=x

%098.29%100
711111.2

5.3711111.2
=×

−
=aε

Second iteration:

x0 = 3.5 f(x0) = 1.775

x1 = 2.711111 f(x1) = −0.45152

871091.2
)45152.0(775.1

)711111.25.3(45152.0
711111.22 =

−−
−−

−=x

%572.5%100
871091.2

711111.2871091.2
=×

−
=aε

Third iteration:

x1 = 2.711111 f(x1) = −0.45152

x2 = 2.871091 f(x2) = −0.31011

221923.3
)31011.0(45152.0

)871091.2711111.2(31011.0
871091.23 =

−−−
−−

−=x

%889.10%100
221923.3

871091.2221923.3
=×

−
=aε

(d) For the modified secant method, the first iteration:

x0 = 3.5 f(x0) = 1.775

x0 + δx0 = 3.57 f(x0 + δx0) = 2.199893

 51

207573.3
775.1199893.2

775.1)5.3(02.0
5.31 =

−
−=x

%117.9%100
207573.3

5.3207573.3
=×

−
=aε

Second iteration:

x1 = 3.207573 f(x1) = 0.453351

x1 + δx1 = 3.271725 f(x1 + δx1) = 0.685016

082034.3
453351.0685016.0

453351.0)207573.3(02.0
207573.32 =

−
−=x

%073.4%100
082034.3

207573.3082034.3
=×

−
=aε

Third iteration:

x2 = 3.082034 f(x2) = 0.084809

x2 + δx2 = 3.143675 f(x2 + δx2) = 0.252242

050812.3
084809.0252242.0

084809.0)082034.3(02.0
082034.33 =

−
−=x

%023.1%100
050812.3

082034.3050812.3
=×

−
=aε

(e)

>> a = [1 -6 11 -6.1]

a =

 1.0000 -6.0000 11.0000 -6.1000

>> roots(a)

ans =

 3.0467

 1.8990

 1.0544

6.4 (a)

>> x = linspace(0,4);

>> y = 7*sin(x).*exp(-x)-1;

>> plot(x,y)

>> grid

 52

The lowest positive root seems to be at approximately 0.2.

(b) The formula for Newton-Raphson is

))sin()(cos(7

1)sin(7
1

ii
x

x
i

ii
xxe

ex
xx

i

i

−

−
−=

−

−

+

Using an initial guess of 3.5, the first iteration yields

144376.0
421627.3

532487.0
3.0

))3.0sin()3.0(cos(7

1)3.0sin(7
3.0

3.0

3.0

1 =−=
−

−
−=

−

−

e

e
x

%8.107%100
144376.0

3.0144376.0
=×

−
=aε

Second iteration:

169409.0
124168.5

12827.0
144376.0

))144376.0sin()144376.0(cos(7

1)144376.0sin(7
144376.0

144376.0

144376.0

2 =
−

−=
−

−
−=

−

−

e

e
x

%776.14%100
169409.0

144376.0169409.0
=×

−
=aε

Third iteration:

170179.0
828278.4

00372.0
169409.0

))169409.0sin()169409.0(cos(7

1)169409.0sin(7
169409.0

169409.0

169409.0

1 =
−

−=
−

−
−=

−

−

e

e
x

 53

%453.0%100
170179.0

169409.0170179.0
=×

−
=aε

(c) For the secant method, the first iteration:

x−1 = 0.4 f(x−1) = 0.827244

x0 = 0.3 f(x0) = 0.532487

119347.0
532487.0827244.0

)3.04.0(532487.0
3.01 =

−
−

−=x

%4.151%100
119347.0

3.0119347.0
=×

−
=aε

Second iteration:

x0 = 0.3 f(x0) = 0.532487

x1 = 0.119347 f(x1) = −0.26032

178664.0
)26032.0(532487.0

)119347.03.0(26032.0
119347.02 =

−−
−−

−=x

%2.33%100
178664.0

119347.0178664.0
=×

−
=aε

Third iteration:

x1 = 0.119347 f(x1) = −0.26032

x2 = 0.178664 f(x2) = 0.04047

170683.0
04047.026032.0

)178664.0119347.0(04047.0
178664.03 =

−−
−

−=x

%68.4%100
170683.0

178664.0170683.0
=×

−
=aε

(d) For the modified secant method, the first iteration:

x0 = 0.3 f(x0) = 0.532487

x0 + δx0 = 0.303 f(x0 + δx0) = 0.542708

143698.0
532487.0542708.0

532487.0)3.0(01.0
3.01 =

−
−=x

%8.108%100
143698.0

3.0143698.0
=×

−
=aε

 54

Second iteration:

x1 = 0.143 698 f(x1) = −0.13175

x1 + δx1 = 0.145135 f(x1 + δx1) = −0.12439

169412.0
)13175.0(12439.0

)13175.0)(143698.0(02.0
143698.02 =

−−−
−

−=x

%18.15%100
169412.0

143698.0169412.0
=×

−
=aε

Third iteration:

x2 = 0.169412 f(x2) = −0.00371

x2 + δx2 = 0.171106 f(x2 + δx2) = 0.004456

170181.0
)00371.0(004456.0

)00371.0)(169412.0(02.0
169412.03 =

−−
−

−=x

%452.0%100
170181.0

169412.0170181.0
=×

−
=aε

6.5 (a) The formula for Newton-Raphson is

35.116075.38425.2662.645

6875.3135.1160375.19275.8805.16
234

2345

1 +−+−

++−+−
−=+

iiii

iiiii
ii

xxxx

xxxxx
xx

Using an initial guess of 0.5825, the first iteration yields

300098.2
1466.29

06217.50
5825.01 =

−
−=x

%675.74%100
300098.2

5825.0300098.2
=×

−
=aε

Second iteration

07506.90
245468.0

546.21
300098.21 =

−
−=x

%446.97%100
07506.90

300098.207506.90
=×

−
=aε

 55

Thus, the result seems to be diverging. However, the computation eventually settles down

and converges (at a very slow rate) on a root at x = 6.5. The iterations can be summarized

as

iteration xi f(xi) f'(xi) |εa|
0 0.582500 50.06217 −29.1466

1 2.300098 −21.546 0.245468 74.675%

2 90.07506 4.94E+09 2.84E+08 97.446%

3 72.71520 1.62E+09 1.16E+08 23.874%

4 58.83059 5.3E+08 47720880 23.601%

5 47.72701 1.74E+08 19552115 23.265%

6 38.84927 56852563 8012160 22.852%

7 31.75349 18616305 3284098 22.346%

8 26.08487 6093455 1346654 21.731%

9 21.55998 1993247 552546.3 20.987%

10 17.95260 651370.2 226941 20.094%

11 15.08238 212524.6 93356.59 19.030%

12 12.80590 69164.94 38502.41 17.777%

13 11.00952 22415.54 15946.36 16.317%

14 9.603832 7213.396 6652.03 14.637%

15 8.519442 2292.246 2810.851 12.728%

16 7.703943 710.9841 1217.675 10.585%

17 7.120057 209.2913 556.1668 8.201%

18 6.743746 54.06896 286.406 5.580%

19 6.554962 9.644695 187.9363 2.880%

20 6.503643 0.597806 164.8912 0.789%

21 6.500017 0.00285 163.32 0.056%

22 6.5 6.58E−08 163.3125 0.000%

(b) For the modified secant method, the first iteration:

x0 = 0.5825 f(x0) = 50.06217

x0 + δx0 = 0.611625 f(x0 + δx0) = 49.15724

193735.2
06217.5015724.49

06217.50)5825.0(05.0
5825.01 =

−
−=x

%447.73%100
193735.2

5825.0193735.2
=×

−
=aε

Second iteration:

x1 = 2.193735 f(x1) = −21.1969

x1 + δx1 = 2.303422 f(x1 + δx1) = −21.5448

48891.4
)1969.21(5448.21

)1969.21)(193735.2(05.0
193735.22 −=

−−−
−

−=x

 56

%87.148%100
48891.4

193735.248891.4
=×

−
−−

=aε

Again, the result seems to be diverging. However, the computation eventually settles down

and converges on a root at x = −0.2. The iterations can be summarized as

iteration xi xi+δxi f(xi) f(xi+ δxi) |εa|
0 0.5825 0.611625 50.06217 49.15724

1 2.193735 2.303422 −21.1969 −21.5448 73.447%

2 −4.48891 −4.71336 −20727.5 −24323.6 148.870%

3 −3.19524 −3.355 −7201.94 −8330.4 40.487%

4 −2.17563 −2.28441 −2452.72 −2793.57 46.865%

5 −1.39285 −1.46249 −808.398 −906.957 56.200%

6 −0.82163 −0.86271 −250.462 −277.968 69.524%

7 −0.44756 −0.46994 −67.4718 −75.4163 83.579%

8 −0.25751 −0.27038 −12.5942 −15.6518 73.806%

9 −0.20447 −0.2147 −0.91903 −3.05726 25.936%

10 −0.20008 −0.21008 −0.01613 −2.08575 2.196%

11 −0.2 −0.21 −0.0002 −2.0686 0.039%

12 −0.2 −0.21 −2.4E−06 −2.06839 0.000%

Explanation of results: The results are explained by looking at a plot of the function. The

guess of 0.5825 is located at a point where the function is relatively flat. Therefore, the first

iteration results in a prediction of 2.3 for Newton-Raphson and 2.193 for the secant method.

At these points the function is very flat and hence, the Newton-Raphson results in a very

high value (90.075), whereas the modified false position goes in the opposite direction to a

negative value (-4.49). Thereafter, the methods slowly converge on the nearest roots.

-60

-40

-20

20

40

60

-2 0 2 4 6 8

Newton

Raphson

Modified

secant

6.6
function root = secant(func,xrold,xr,es,maxit)

% secant(func,xrold,xr,es,maxit):

% uses secant method to find the root of a function

% input:

% func = name of function

% xrold, xr = initial guesses

% es = (optional) stopping criterion (%)

 57

% maxit = (optional) maximum allowable iterations

% output:

% root = real root

% if necessary, assign default values

if nargin<5, maxit=50; end %if maxit blank set to 50

if nargin<4, es=0.001; end %if es blank set to 0.001

% Secant method

iter = 0;

while (1)

 xrn = xr - func(xr)*(xrold - xr)/(func(xrold) - func(xr));

 iter = iter + 1;

 if xrn ~= 0, ea = abs((xrn - xr)/xrn) * 100; end

 if ea <= es | iter >= maxit, break, end

 xrold = xr;

 xr = xrn;

end

root = xrn;

Test by solving Prob. 6.3:

>> secant(inline('x^3-6*x^2+11*x-6.1'),2.5,3.5)

ans =

 3.0467

6.7
function root = modsec(func,xr,delta,es,maxit)

% secant(func,xrold,xr,es,maxit):

% uses the modified secant method

% to find the root of a function

% input:

% func = name of function

% xr = initial guess

% delta = perturbation fraction

% es = (optional) stopping criterion (%)

% maxit = (optional) maximum allowable iterations

% output:

% root = real root

% if necessary, assign default values

if nargin<5, maxit=50; end %if maxit blank set to 50

if nargin<4, es=0.001; end %if es blank set to 0.001

if nargin<3, delta=1E-5; end %if delta blank set to 0.00001

% Secant method

iter = 0;

while (1)

 xrold = xr;

 xr = xr - delta*xr*func(xr)/(func(xr+delta*xr)-func(xr));

 iter = iter + 1;

 if xr ~= 0, ea = abs((xr - xrold)/xr) * 100; end

 if ea <= es | iter >= maxit, break, end

end

root = xr;

 58

Test by solving Prob. 6.3:

>> modsec(inline('x^3-6*x^2+11*x-6.1'),3.5,0.02)

ans =

 3.0467

6.8 The equation to be differentiated is

vt
m

gc

c

gm
mf d

d

−⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
= tanh)(

Note that

dx

du
u

dx

ud 2sech
tanh

=

Therefore, the derivative can be evaluated as

d

ddd

d

d

d c

g

gm

c
t

m

gc

m

gc
t

gc

m
t

m

gc

c

gm

dm

mdf

2

1
tanh

2

1
sech

)(
2

2

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
+⎟

⎟
⎠

⎞
⎜
⎜
⎝

⎛
−⎟

⎟
⎠

⎞
⎜
⎜
⎝

⎛
=

The two terms can be reordered

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
−⎟

⎟
⎠

⎞
⎜
⎜
⎝

⎛
= t

m

gc
t

m

gc

gc

m

c

gm
t

m

gc

c

g

gm

c

dm

mdf dd

dd

d

d

d 2

2
sech

2

1
tanh

2

1)(

The terms premultiplying the tanh and sech can be simplified to yield the final result

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
−⎟

⎟
⎠

⎞
⎜
⎜
⎝

⎛
= t

m

gc
t

m

g
t

m

gc

mc

g

dm

mdf dd

d

 sech
2

tanh
2

1)(2

6.9 (a) The formula for Newton-Raphson is

2

32

1
5.186

5.0462

ii

iii
ii

xx

xxx
xx

+−

+−+−
−=+

Using an initial guess of 4.5, the iterations proceed as

iteration xi f(xi) f'(xi) |εa|
0 4.5 −10.4375 0.375

1 32.333330 12911.57 1315.5 86.082%

2 22.518380 3814.08 586.469 43.586%

3 16.014910 1121.912 262.5968 40.609%

4 11.742540 326.4795 118.8906 36.384%

 59

5 8.996489 92.30526 55.43331 30.524%

6 7.331330 24.01802 27.97196 22.713%

7 6.472684 4.842169 17.06199 13.266%

8 6.188886 0.448386 13.94237 4.586%

9 6.156726 0.005448 13.6041 0.522%

10 6.156325 8.39E−07 13.59991 0.007%

Thus, after an initial jump, the computation eventually settles down and converges on a

root at x = 6.156325.

(b) Using an initial guess of 4.43, the iterations proceed as

iteration xi f(xi) f'(xi) |εa|
0 4.43 -10.4504 -0.00265

1 -3939.13 -3.1E+10 23306693 100.112%

2 -2625.2 -9.1E+09 10358532 50.051%

3 -1749.25 -2.7E+09 4603793 50.076%

4 -1165.28 -8E+08 2046132 50.114%

5 -775.964 -2.4E+08 909393.5 50.171%
⋅
⋅
⋅

21 0.325261 -0.45441 3.556607 105.549%

22 0.453025 -0.05629 2.683645 28.203%

23 0.474 -0.00146 2.545015 4.425%

24 0.474572 -1.1E-06 2.541252 0.121%

25 0.474572 -5.9E-13 2.541249 0.000%

This time the solution jumps to an extremely large negative value The computation

eventually converges at a very slow rate on a root at x = 0.474572.

Explanation of results: The results are explained by looking at a plot of the function. Both

guesses are in a region where the function is relatively flat. Because the two guesses are on

opposite sides of a minimum, both are sent to different regions that are far from the initial

guesses. Thereafter, the methods slowly converge on the nearest roots.

 60

-12

-8

-4

0

4

0 2 4 6

6.10 The function to be evaluated is

ax =

This equation can be squared and expressed as a roots problem,

axxf −= 2)(

The derivative of this function is

xxf 2)(' =

These functions can be substituted into the Newton-Raphson equation (Eq. 6.6),

i

i
ii

x

ax
xx

2

2

1

−
−=+

which can be expressed as

2

/
1

ii
i

xax
x

+
=+

6.11 (a) The formula for Newton-Raphson is

()
()9sech2

9tanh
22

2

1 −

−
−=+

ii

i
ii

xx

x
xx

Using an initial guess of 3.2, the iterations proceed as

iteration xi f(xi) f'(xi) |εa|
0 3.2 0.845456 1.825311

1 2.736816 −0.906910 0.971640 16.924%

 61

2 3.670197 0.999738 0.003844 25.431%

3 −256.413 101.431%

(b) The solution diverges from its real root of x = 3. Due to the concavity of the slope, the

next iteration will always diverge. The following graph illustrates how the divergence

evolves.

-1

-0.5

0

0.5

1

2.6 2.8 3 3.2 3.4

-1

-0.5

0

0.5

1

2.6 2.8 3 3.2 3.4

6.12 The formula for Newton-Raphson is

1832.1271.6852.00296.0

5183.12355.3284.00074.0
23

234

1 −+−

+−+−
−=+

iii

iiii
ii

xxx

xxxx
xx

Using an initial guess of 16.15, the iterations proceed as

iteration xi f(xi) f'(xi) |εa|
0 16.15 −9.57445 −1.35368

1 9.077102 8.678763 0.662596 77.920%

2 −4.02101 128.6318 −54.864 325.742%

3 −1.67645 36.24995 −25.966 139.852%

4 −0.2804 8.686147 −14.1321 497.887%

5 0.334244 1.292213 −10.0343 183.890%

6 0.463023 0.050416 −9.25584 27.813%

7 0.46847 8.81E−05 −9.22351 1.163%

8 0.46848 2.7E−10 −9.22345 0.002%

As depicted below, the iterations involve regions of the curve that have flat slopes. Hence,

the solution is cast far from the roots in the vicinity of the original guess.

 62

-10

-5

0

5

10

-5 5 10 15 20

6.13 The solution involves determining the root of

05.0
2

6

1
)(−

+−
=

xx

x
xf

MATLAB can be used to develop a plot that indicates that a root occurs in the vicinity of x

= 0.03.

>> f = inline('x./(1-x).*sqrt(6./(2+x))-0.05')

f =

 Inline function:

 f(x) = x./(1-x).*sqrt(6./(2+x))-0.05

>> x = linspace(0,.2);

>> y = f(x);

>> plot(x,y)

The fzero function can then be used to find the root

 63

>> format long

>> fzero(f,0.03)

ans =

 0.02824944114847

6.14 The coefficient, a and b, can be evaluated as

>> format long

>> R = 0.518;pc = 4600;Tc = 191;

>> a = 0.427*R^2*Tc^2.5/pc

a =

 12.55778319740302

>> b = 0.0866*R*Tc/pc

b =

 0.00186261539130

The solution, therefore, involves determining the root of

15.233)0018626.0(

557783.12

0018626.0

)15.233(518.0
000,65)(

+
+

−
−=

vvv
vf

MATLAB can be used to generate a plot of the function and to solve for the root. One way

to do this is to develop an M-file for the function,

function y = fvol(v)

R = 0.518;pc = 4600;Tc = 191;

a = 0.427*R^2*Tc^2.5/pc;

b = 0.0866*R*Tc/pc;

T = 273.15-40;p = 65000;

y = p - R*T./(v-b)+a./(v.*(v+b)*sqrt(T));

This function is saved as fvol.m. It can then be used to generate a plot

>> v = linspace(0.002,0.004);

>> fv = fvol(v);

>> plot(v,fv)

>> grid

 64

Thus, a root is located at about 0.0028. The fzero function can be used to refine this

estimate,

>> vroot = fzero('fvol',0.0028)

vroot =

 0.00280840865703

The mass of methane contained in the tank can be computed as

3m 317.1068
0.0028084

3
mass ===

v

V

6.15 The function to be evaluated is

Lhrhhr
r

hr
rVhf ⎥

⎦

⎤
⎢
⎣

⎡
−−−⎟

⎠
⎞

⎜
⎝
⎛ −

−= − 212 2)(cos)(

To use MATLAB to obtain a solution, the function can be written as an M-file

function y = fh(h,r,L,V)

y = V - (r^2*acos((r-h)/r)-(r-h)*sqrt(2*r*h-h^2))*L;

The fzero function can be used to determine the root as

>> format long

>> r = 2;L = 5;V = 8;

>> h = fzero('fh',0.5,[],r,L,V)

h =

 0.74001521805594

 65

6.16 (a) The function to be evaluated is

10

500
cosh

10
10)(A

A

A
A

T

T

T
Tf +⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
−=

The solution can be obtained with the fzero function as

>> format long

>> TA = fzero(inline('10-x/10*cosh(500/x)+x/10'),1000)

TA =

 1.266324360399887e+003

(b) A plot of the cable can be generated as

>> x = linspace(-50,100);

>> w = 10;y0 = 5;

>> y = TA/w*cosh(w*x/TA) + y0 - TA/w;

>> plot(x,y),grid

6.17 The function to be evaluated is

5.3)2sin(9)(−= − tetf t π

A plot can be generated with MATLAB,

>> t = linspace(0,2);

>> y = 9*exp(-t) .* sin(2*pi*t) - 3.5;

>> plot(t,y),grid

 66

Thus, there appear to be two roots at approximately 0.1 and 0.4. The fzero function can be

used to obtain refined estimates,

>> t = fzero('9*exp(-x)*sin(2*pi*x)-3.5',[0 0.2])

t =

 0.06835432096851

>> t = fzero('9*exp(-x)*sin(2*pi*x)-3.5',[0.2 0.8])

t =

 0.40134369265980

6.18 The function to be evaluated is

2

2

111
)(⎟

⎠
⎞

⎜
⎝
⎛ −+−=

L
C

RZ
f

ω
ωω

Substituting the parameter values yields

2

6 2
106.0

50625

1
01.0)(⎟

⎠
⎞

⎜
⎝
⎛ −×+−= −

ω
ωωf

The fzero function can be used to determine the root as

>> fzero('0.01-sqrt(1/50625+(.6e-6*x-2./x).^2)',[1 1000])

ans =

 220.0202

6.19 The fzero function can be used to determine the root as

 67

>> format long

>> fzero('2*40*x^(5/2)/5+0.5*40000*x^2-95*9.8*x-95*9.8*0.43',1)

ans =

 0.16662477900186

6.20 If the height at which the throw leaves the right fielders arm is defined as y = 0, the y at 90

m will be –0.8. Therefore, the function to be evaluated is

)180/(cos

1.44

180
tan908.0)(

0
20 πθ

θπθ −⎟
⎠
⎞

⎜
⎝
⎛+=f

Note that the angle is expressed in degrees. First, MATLAB can be used to plot this

function versus various angles.

Roots seem to occur at about 40o and 50o. These estimates can be refined with the fzero

function,

>> theta = fzero('0.8+90*tan(pi*x/180)-44.1./cos(pi*x/180).^2',0)

theta =

 37.8380

>> theta = fzero('0.8+90*tan(pi*x/180)-44.1./cos(pi*x/180).^2',[40 60])

theta =

 51.6527

Thus, the right fielder can throw at two different angles to attain the same result.

6.21 The equation to be solved is

 68

VhRhhf −⎟
⎠
⎞

⎜
⎝
⎛−= 32

3
)(

ππ

Because this equation is easy to differentiate, the Newton-Raphson is the best choice to

achieve results efficiently. It can be formulated as

2

32

1
2

3

ii

ii

ii
xRx

VxRx

xx
ππ

ππ

−

−⎟
⎠
⎞

⎜
⎝
⎛−

−=+

or substituting the parameter values,

2

32

1
)10(2

1000
3

)10(

ii

ii

ii
xx

xx

xx
ππ

ππ

−

−⎟
⎠
⎞

⎜
⎝
⎛−

−=+

The iterations can be summarized as

iteration xi f(xi) f'(xi) |εa|
0 10 1094.395 314.1593

1 6.516432 44.26917 276.0353 53.458%

2 6.356057 0.2858 272.4442 2.523%

3 6.355008 1.26E-05 272.4202 0.017%

Thus, after only three iterations, the root is determined to be 6.355008 with an approximate

relative error of 0.017%.

6.22
>> r = [-2 6 1 -4 8];

>> a = poly(r)

a =

 1 -9 -20 204 208 -384

>> polyval(a,1)

ans =

 0

>> b = poly([-2 6])

b =

 1 -4 -12

>> [q,r] = deconv(a,b)

q =

 1 -5 -28 32

r =

 0 0 0 0 0 0

 69

>> x = roots(q)

x =

 8.0000

 -4.0000

 1.0000

>> a = conv(q,b)

a =

 1 -9 -20 204 208 -384

>> x = roots(a)

x =

 8.0000

 6.0000

 -4.0000

 -2.0000

 1.0000

>> a = poly(x)

a =

 1.0000 -9.0000 -20.0000 204.0000 208.0000 -384.0000

6.23
>> a = [1 9 26 24];

>> r = roots(a)

r =

 -4.0000

 -3.0000

 -2.0000

>> a = [1 15 77 153 90];

>> r = roots(a)

r =

 -6.0000

 -5.0000

 -3.0000

 -1.0000

Therefore, the transfer function is

)1)(3)(5)(6(

)2)(3)(4(
)(

++++
+++

=
ssss

sss
sG

 70

CHAPTER 7

7.1
>> Aug = [A eye(size(A))]

Here’s an example session of how it can be employed.

>> A = rand(3)

A =

 0.9501 0.4860 0.4565

 0.2311 0.8913 0.0185

 0.6068 0.7621 0.8214

>> Aug = [A eye(size(A))]

Aug =

 0.9501 0.4860 0.4565 1.0000 0 0

 0.2311 0.8913 0.0185 0 1.0000 0

 0.6068 0.7621 0.8214 0 0 1.0000

7.2 (a) [A]: 3 × 2 [B]: 3 × 3 {C}: 3 × 1 [D]: 2 × 4

 [E]: 3 × 3 [F]: 2 × 3 ⎣G⎦: 1 × 3

(b) square: [B], [E]; column: {C}, row: ⎣G⎦

(c) a12 = 5, b23 = 6, d32 = undefined, e22 = 1, f12 = 0, g12 = 6

(d) MATLAB can be used to perform the operations

(1)
⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
=+

905
938

1385
][][BE (2)

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡

−−
−

−
=−

103
316
123

][][BE

(3) [A] + [F] = undefined (4)
⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
=

2005
30105
351520

][5 F

(5) [A] × [B] = undefined (6)
⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
=×

2924
4536
6854

][][AB

(7) [G] × [C] = 56 (8) ⎣ ⎦162][=TC

(9)

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
=

56
73
14
25

][TD (10)
⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
=×

401
621
734

][BI

7.3 The terms can be collected to give

 71

⎪⎭

⎪
⎬
⎫

⎪⎩

⎪
⎨
⎧

−=
⎪⎭

⎪
⎬
⎫

⎪⎩

⎪
⎨
⎧

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡

−−

−

40
30

10

734
740
037

3

2

1

x

x

x

Here is the MATLAB session:

>> A = [-7 3 0;0 4 7;-4 3 -7];

>> b = [10;-30;40];

>> x = A\b

x =

 -1.0811

 0.8108

 -4.7490

>> AT = A'

AT =

 -7 0 -4

 3 4 3

 0 7 -7

>> AI = inv(A)

AI =

 -0.1892 0.0811 0.0811

 -0.1081 0.1892 0.1892

 0.0618 0.0347 -0.1081

7.4

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡

−

−
=×

2417
5655

823
][][YX

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡

−
−=×

223
5230
812

][][ZX

⎥⎦
⎤

⎢⎣
⎡
−=×

3447
84

][][ZY

⎥⎦
⎤

⎢⎣
⎡
−=×

3220
166

][][YZ

7.5 Terms can be combined to yield

 72

gmkxkx

gmkxkxkx

gmkxkx

332

2321

121

2

 2

=+−

=−+−

=−

Substituting the parameter values

⎪⎭

⎪
⎬
⎫

⎪⎩

⎪
⎨
⎧

=
⎪⎭

⎪
⎬
⎫

⎪⎩

⎪
⎨
⎧

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡

−
−−

−

525.24
43.29
62.19

10100
102010
01020

3

2

1

x

x

x

A MATLAB session can be used to obtain the solution for the displacements

>> K=[20 -10 0;-10 20 -10;0 -10 10];

>> m=[2;3;2.5];

>> mg=m*9.81;

>> x=K\mg

x =

 7.3575

 12.7530

 15.2055

7.6 The mass balances can be written as

0)(

0

)(

0)(

)(

55554225115

554444334224

030333431223

2252423112

010133111215

=++−−

=−+−−

=++−

=+++−

=−+

cQQcQcQ

cQcQcQcQ

cQcQQcQ

cQQQcQ

cQcQcQQ

The parameters can be substituted and the result written in matrix form as

⎪
⎪
⎭

⎪⎪
⎬

⎫

⎪
⎪
⎩

⎪⎪
⎨

⎧

=

⎪
⎪
⎭

⎪
⎪
⎬

⎫

⎪
⎪
⎩

⎪
⎪
⎨

⎧

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

−−
−−−

−
−

−

0
0

160
0

50

40013
211810

00910
00033
00106

5

4

3

2

1

c

c

c

c

c

MATLAB can then be used to solve for the concentrations

>> Q = [6 0 -1 0 0;

-3 3 0 0 0;

0 -1 9 0 0;

0 -1 -8 11 -2;

-3 -1 0 0 4];

>> Qc = [50;0;160;0;0];

 73

>> c = Q\Qc

c =

 11.5094

 11.5094

 19.0566

 16.9983

 11.5094

7.7 The problem can be written in matrix form as

⎪
⎪

⎭

⎪
⎪

⎬

⎫

⎪
⎪

⎩

⎪
⎪

⎨

⎧
−

=

⎪
⎪
⎪

⎭

⎪⎪
⎪

⎬

⎫

⎪
⎪
⎪

⎩

⎪⎪
⎪

⎨

⎧

⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢

⎣

⎡

−−

−−
−−−

−

0
0
0
0

1000
0

100866.000
0005.010
010005.0
00101866.0
000866.005.0
0005.00866.0

3

2

2

3

2

1

V

V

H

F

F

F

MATLAB can then be used to solve for the forces and reactions,

>> A = [0.866 0 -0.5 0 0 0;

0.5 0 0.866 0 0 0;

-0.866 -1 0 -1 0 0;

-0.5 0 0 0 -1 0;

0 1 0.5 0 0 0;

0 0 -0.866 0 0 -1]

>> b = [0 -1000 0 0 0 0]';

>> F = A\b

F =

 -500.0220

 433.0191

 -866.0381

 -0.0000

 250.0110

 749.9890

Therefore,

F1 = –500 F2 = 433 F3 = –866

H2 = 0 V2 = 250 V3 = 750

7.8 The problem can be written in matrix form as

⎪
⎪

⎭

⎪
⎪

⎬

⎫

⎪
⎪

⎩

⎪
⎪

⎨

⎧

=

⎪
⎪
⎪

⎭

⎪⎪
⎪

⎬

⎫

⎪
⎪
⎪

⎩

⎪⎪
⎪

⎨

⎧

⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢

⎣

⎡

−−
−−−
−

−
−−

200
0
0
0
0
0

00200105
515010100
110000

100100
011010
000111

43

54

65

32

52

12

i

i

i

i

i

i

MATLAB can then be used to solve for the currents,

 74

>> A = [1 1 1 0 0 0 ;

0 -1 0 1 -1 0;

0 0 -1 0 0 1;

0 0 0 0 1 -1;

0 10 -10 0 -15 -5;

5 -10 0 -20 0 0];

>> b = [0 0 0 0 0 200]';

>> i = A\b

i =

 6.1538

 -4.6154

 -1.5385

 -6.1538

 -1.5385

 -1.5385

7.9

>> k1 = 10;k2 = 40;k3 = 40;k4 = 10;

>> m1 = 1;m2 = 1;m3 = 1;

>> km = [(1/m1)*(k2+k1), -(k2/m1),0;

-(k2/m2), (1/m2)*(k2+k3), -(k3/m2);

0, -(k3/m3),(1/m3)*(k3+k4)];

>> x = [0.05;0.04;0.03];

>> kmx = km*x

kmx =

 0.9000

 0.0000

 -0.1000

Therefore, 1x&& = −0.9, 2x&& = 0 , and 3x&& = 0.1 m/s2.

 75

 CHAPTER 8

8.1 The flop counts for the tridiagonal algorithm in Fig. 8.6 can be summarized as

 Mult/Div Add/Subtr Total

Forward elimination 3(n – 1) 2(n – 1) 5(n – 1)
Back substitution 2n – 1 n – 1 3n – 2
Total 5n – 4 3n – 3 8n – 7

Thus, as n increases, the effort is much, much less than for a full matrix solved with Gauss

elimination which is proportional to n3.

8.2 The equations can be expressed in a format that is compatible with graphing x2 versus x1:

6

34

6

1

35.0

12

12

+−=

+=

xx

xx

which can be plotted as

0

1

2

3

4

5

6

7

8

9

10

0 2 4 6 8 10 12

Thus, the solution is x1 = 4, x2 = 5. The solution can be checked by substituting it back into

the equations to give

34 304)5(64

244016)5(8)4(4

=+=+

−=−=−

8.3 (a) The equations can be expressed in a format that is compatible with graphing x2 versus x1:

10114943.0

1211.0

12

12

+=

+=

xx

xx

 76

which can be plotted as

0

20

40

60

80

100

120

140

0 200 400 600 800 1000

Thus, the solution is approximately x1 = 400, x2 = 60. The solution can be checked by

substituting it back into the equations to give

174244)60(4.172(400)

120160)60(10)400(1.1

≈=+−

≈=+−

Therefore, the graphical solution is not very good.

(b) Because the lines have very similar slopes, you would expect that the system would be

ill-conditioned

(c) The determinant can be computed as

86.02014.19)2(10)2.17(1.1
4.172

101.1 =+−=−−−=−
−

This result is relatively low suggesting that the solution is ill-conditioned.

8.4 (a) The determinant can be evaluated as

69)12(7)5(3)2(0

25
21

7
05
11

)3(
02
12

0

−=−++−=

⎥⎦
⎤

⎢⎣
⎡

−+⎥⎦
⎤

⎢⎣
⎡ −−−⎥⎦

⎤
⎢⎣
⎡
−

−=

D

D

(b) Cramer’s rule

 77

9855.0
69

68

69

022
123

732

1 =
−
−

=
−

−
−

−

=x

4638.1
69

101

69

025
131

720

2 =
−
−

=
−

−

=x

9130.0
69

63

69

225
321
230

3 =
−
−

=
−

−

−

=x

(c) Pivoting is necessary, so switch the first and third rows,

273
32
2 25

32

321

21

=+−
=−+
=−

xx
xxx

xx

Multiply pivot row 1 by 1/5 and subtract the result from the second row to eliminate the a21

term.

273
6.24.2

2 25

32

32

21

=+−
=−
=−

xx
xx

xx

Pivoting is necessary so switch the second and third row,

6.24.2
273
2 25

32

32

21

=−
=+−
=−

xx
xx

xx

Multiply pivot row 2 by 2.4/(–3) and subtract the result from the third row to eliminate the

a32 term.

2.4.64
273
2 25

3

32

21

=
=+−
=−

x
xx

xx

The solution can then be obtained by back substitution

913043.0
6.4

2.4
3 ==x

463768.1
3

)913043.0(72
2 =

−
−

=x

 78

985507.0
5

)463768.1(22
1 =

+
=x

(d)

2)463768.1(2)985507.0(5

3)913043.0()463768.1(2985507.0

2)913043.0(7)463768.1(3

=−

=−+

=+−

8.5 Prob. 8.3:

>> A=[-1.1 10;-2 17.4];

>> det(A)

ans =

 0.8600

Prob. 8.4:

>> A=[0 -3 7;1 2 -1;5 -2 0];

>> det(A)

ans =

 -69

8.6 (a) The equations can be expressed in a format that is compatible with graphing x2 versus x1:

4.951.0

5.95.0

12

12

+=

+=

xx

xx

The resulting plot indicates that the intersection of the lines is difficult to detect:

10

12

14

16

18

20

22

5 10 15 20

Only when the plot is zoomed is it at all possible to discern that solution seems to lie at

about x1 = 14.5 and x2 = 10.

 79

14.3

14.35

14.4

14.45

14.5

14.55

14.6

14.65

14.7

9.75 10 10.25

 (b) The determinant can be computed as

02.0)02.1)(1()2(5.0
202.1
15.0 =−−−=−

−

which is close to zero.

(c) Because the lines have very similar slopes and the determinant is so small, you would

expect that the system would be ill-conditioned

(d) Multiply the first equation by 1.02/0.5 and subtract the result from the second equation

to eliminate the x1 term from the second equation,

58.004.0

5.95.0

2

21

=

−=−

x

xx

The second equation can be solved for

5.14
04.0

58.0
2 ==x

This result can be substituted into the first equation which can be solved for

10
5.0

5.145.9
1 =

+−
=x

(e) Multiply the first equation by 1.02/0.52 and subtract the result from the second equation

to eliminate the x1 term from the second equation,

16538.003846.0

5.9 52.0

2

21

−=−

−=−

x

xx

 80

The second equation can be solved for

3.4
03846.0

16538.0
2 =

−
−

=x

This result can be substituted into the first equation which can be solved for

10
52.0

3.45.9
1 −=

+−
=x

Interpretation: The fact that a slight change in one of the coefficients results in a radically

different solution illustrates that this system is very ill-conditioned.

8.7 (a) Multiply the first equation by –3/10 and subtract the result from the second equation to

eliminate the x1 term from the second equation. Then, multiply the first equation by 1/10

and subtract the result from the third equation to eliminate the x1 term from the third

equation.

2.241.5 8.0

4.537.14.5

27 210

32

32

321

−=+

−=+−

=−+

xx

xx

xxx

Multiply the second equation by 0.8/(–5.4) and subtract the result from the third equation to

eliminate the x2 term from the third equation,

11111.325.351852

4.537.1 4.5

27 210

3

32

321

−=

−=+−

=−+

x

xx

xxx

Back substitution can then be used to determine the unknowns

5.0
10

))8(2627(

8
4.5

))6(7.14.53(

6
351852.5

11111.32

1

2

3

=
−−

=

=
−

−−−
=

−=
−

=

x

x

x

(b) Check:

 81

5.21)6(585.0

5.61)6(2)8(6)5.0(3

27)6()8(2)5.0(10

−=−++

−=−+−−

=−−+

8.8 (a) Pivoting is necessary, so switch the first and third rows,

3862

3473

2028

321

321

321

−=−−

−=+−−

−=−+−

xxx

xxx

xxx

Multiply the first equation by –3/(–8) and subtract the result from the second equation to

eliminate the a21 term from the second equation. Then, multiply the first equation by 2/(–8)

and subtract the result from the third equation to eliminate the a31 term from the third

equation.

435.1 75.5

5.2675.7375.1

202 8

32

32

321

−=−−

−=+−

−=−+−

xx

xx

xxx

Pivoting is necessary so switch the second and third row,

5.2675.7375.1

435.1 75.5

202 8

32

32

321

−=+−

−=−−

−=−+−

xx

xx

xxx

Multiply pivot row 2 by –1.375/(–5.75) and subtract the result from the third row to

eliminate the a32 term.

21739.168.108696

435.1 75.5

202 8

3

32

321

−=

−=−−

−=−+−

x

xx

xxx

The solution can then be obtained by back substitution

2
108696.8

21739.16
3 −=

−
=x

8
75.5

)2(5.143
2 =

−
−+−

=x

 82

4
8

)8(1)2(220
1 =

−
−−+−

=x

 (b) Check:

20)2(2)8()4(8

34)2(7)8()4(3

38)2()8(6)4(2

−=−−+−

−=−+−−

−=−−−

8.9 Multiply the first equation by –0.4/0.8 and subtract the result from the second equation to

eliminate the x1 term from the second equation.

⎪⎭

⎪
⎬
⎫

⎪⎩

⎪
⎨
⎧

=
⎪⎭

⎪
⎬
⎫

⎪⎩

⎪
⎨
⎧

⎥
⎥

⎦

⎤

⎢
⎢

⎣

⎡

−
−

−

105
5.45

41

8.04.0

4.06.0

4.08.0

3

2

1

x

x

x

Multiply pivot row 2 by –0.4/0.6 and subtract the result from the third row to eliminate the

x2 term.

⎪⎭

⎪
⎬
⎫

⎪⎩

⎪
⎨
⎧

=
⎪⎭

⎪
⎬
⎫

⎪⎩

⎪
⎨
⎧

⎥
⎥

⎦

⎤

⎢
⎢

⎣

⎡
−

−

3333.135
5.45

41

533333.0

4.06.0

4.08.0

3

2

1

x

x

x

The solution can then be obtained by back substitution

75.253
533333.0

3333.135
3 ==x

245
6.0

75.253)4.0(5.45
2 =

−−
=x

75.173
8.0

245)4.0(41
1 =

−−
=x

 (b) Check:

105)75.253(8.0)245(4.0

25)75.253(4.0)245(8.0)75.173(4.0

41)245(4.0)75.173(8.0

=+−

=−+−

=−

8.10 The mass balances can be written as

 83

200

400

333223113

223221112

113112221

+=+

+=

+=+

cQcQcQ

cQcQcQ

cQcQcQ

or collecting terms

200

0)(

400)(

333223113

22321112

22111312

=+−−

=++−

=−+

cQcQcQ

cQQcQ

cQcQQ

Substituting the values for the flows and expressing in matrix form

⎪⎭

⎪
⎬
⎫

⎪⎩

⎪
⎨
⎧

=
⎪⎭

⎪
⎬
⎫

⎪⎩

⎪
⎨
⎧

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡

−−
−

−

200
0

400

1206040
08080
020120

3

2

1

c

c

c

A solution can be obtained with MATLAB as

>> A = [120 -20 0;-80 80 0;-40 -60 120];

>> b = [400 0 200]';

>> c = a\b

c =

 4.0000

 4.0000

 5.0000

8.11 Equations for the amount of sand, fine gravel and coarse gravel can be written as

800050.035.038.0

500015.040.030.0

600035.025.032.0

321

321

321

=++

=++

=++

xxx

xxx

xxx

where xi = the amount of gravel taken from pit i. MATLAB can be used to solve this

system of equations for

>> A=[0.32 0.25 0.35;0.3 0.4 0.15;0.38 0.35 0.5];

>> b=[6000;5000;8000];

>> x=A\b

x =

 1.0e+003 *

 7.0000

 4.4000

 7.6000

Therefore, we take 7000, 4400 and 7600 m3 from pits 1, 2 and 3 respectively.

 84

8.12 Substituting the parameter values the heat-balance equations can be written for the four

nodes as

42002.2
42.2
42.2
42.240

43

432

321

21

=−+−
=−+−
=−+−
=−+−

TT
TTT
TTT
TT

Collecting terms and expressing in matrix form

⎪
⎭

⎪
⎬

⎫

⎪
⎩

⎪
⎨

⎧
=

⎪
⎭

⎪
⎬

⎫

⎪
⎩

⎪
⎨

⎧

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

−
−−

−−
−

204
4
4

44

2.2100
12.210

012.21
0012.2

4

3

2

1

T

T

T

T

The solution can be obtained with MATLAB as

>> A=[2.2 -1 0 0;-1 2.2 -1 0;0 -1 2.2 -1;0 0 -1 2.2]

>> b=[44 4 4 204]'

>> T=A\b

T =

 50.7866

 67.7306

 94.2206

 135.5548

 85

CHAPTER 9

9.1 The flop counts for LU decomposition can be determined in a similar fashion as was done

for Gauss elimination. The major difference is that the elimination is only implemented for

the left-hand side coefficients. Thus, for every iteration of the inner loop, there are n

multiplications/divisions and n – 1 addition/subtractions. The computations can be

summarized as

Outer Loop

k

Inner Loop

i

Addition/Subtraction

flops

Multiplication/Division

flops

1 2, n (n – 1)(n – 1) (n – 1)n

2 3, n (n – 2)(n – 2) (n – 2)(n – 1)

.

.

.

.

.

.

k k + 1, n (n – k)(n – k) (n – k)(n + 1 – k)

.

.

.

.

.

.

n – 1 n, n (1)(1) (1)(2)

Therefore, the total addition/subtraction flops for elimination can be computed as

[]∑∑
−

=

−

=

+−=−−
1

1

22
1

1

2))((
n

k

n

k

knknknkn

Applying some of the relationships from Eq. (8.14) yields

[]
623

2
231

1

22 nnn
knkn

n

k

+−=+−∑
−

=

A similar analysis for the multiplication/division flops yields

33
)1)((

31

1

nn
knkn

n

k

−=−+−∑
−

=

[] [])(
3

)(
3

1
)()(2

3
23323 nO

n
nOnnOnnOn +=⎥⎦

⎤
⎢⎣
⎡ +++−+

Summing these results gives

623

2 23 nnn
−−

For forward substitution, the numbers of multiplications and subtractions are the same and

equal to

 86

222

)1(21

1

nnnn
i

n

i

−=
−

=∑
−

=

Back substitution is the same as for Gauss elimination: n2/2 – n/2 subtractions and n2/2 +

n/2 multiplications/divisions. The entire number of flops can be summarized as

 Mult/Div Add/Subtr Total

Forward elimination

33

3 nn
−

623

23 nnn
+−

623

2 23 nnn
−−

Forward substitution

22

2 nn
−

22

2 nn
−

nn −2

Back substitution

22

2 nn
+

22

2 nn
−

2n

Total

33

2
3 n

n
n

−+
6

5

23

23 nnn
−+

6

7

2

3

3

2 23 nnn
−+

The total number of flops is identical to that obtained with standard Gauss elimination.

9.2 Equation (9.6) is

{ } }{}]{[}{}]{[][bxAdxUL −=− (9.6)

Matrix multiplication is distributive, so the left-hand side can be rewritten as

}{}]{[}]{[}]{][[bxAdLxUL −=−

Equating the terms that are multiplied by {x} yields,

}]{[}]{][[xAxUL =

and, therefore, Eq. (9.7) follows

][]][[AUL = (9.7)

Equating the constant terms yields Eq. (9.8)

}{}]{[bdL = (9.8)

9.3 The matrix to be evaluated is

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
−−

−

511
263
1210

Multiply the first row by f21 = –3/10 = –0.3 and subtract the result from the second row to

eliminate the a21 term. Then, multiply the first row by f31 = 1/10 = 0.1 and subtract the

result from the third row to eliminate the a31 term. The result is

 87

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
−

−

1.58.00
7.14.50
1210

Multiply the second row by f32 = 0.8/(–5.4) = –0.148148 and subtract the result from the

third row to eliminate the a32 term.

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
−

−

351852.500
7.14.50
1210

Therefore, the LU decomposition is

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
−

−

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡

−
−=

351852.500
7.14.50
1210

1148148.01.0
013.0
001

]]{[UL

Multiplying [L] and [U] yields the original matrix as verified by the following MATLAB

session,

>> L = [1 0 0;-0.3 1 0;0.1 -0.148148 1];

>> U = [10 2 -1;0 -5.4 1.7;0 0 5.351852];

>> A = L*U

A =

 10.0000 2.0000 -1.0000

 -3.0000 -6.0000 2.0000

 1.0000 1.0000 5.0000

9.4 The LU decomposition can be computed as

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
−

−

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡

−
−=

351852.500
7.14.50
1210

1148148.01.0
013.0
001

]]{[UL

Forward substitution:

⎪⎭

⎪
⎬
⎫

⎪⎩

⎪
⎨
⎧

−
−

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡

−
−=

5.21
5.61

27

1148148.01.0
013.0
001

}{d

271 =d

4.53)27(3.05.612 −=+−=d

11111.32)4.53)(148148.0()27(1.05.213 −=−−−−−=d

Back substitution:

 88

⎪⎭

⎪
⎬
⎫

⎪⎩

⎪
⎨
⎧

−
−=

⎪⎭

⎪
⎬
⎫

⎪⎩

⎪
⎨
⎧

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
−

−
=

11111.32
5.53

27

351852.500
7.14.50
1210

}{

3

2

1

x

x

x

x

6
351852.5

11111.32
3 −=

−
=x

8
4.5

)6(7.14.53
2 =

−
−−−

=x

5.0
10

)6)(1()8(227
1 =

−−−−
=x

For the alternative right-hand-side vector, forward substitution is implemented as

⎪⎭

⎪
⎬
⎫

⎪⎩

⎪
⎨
⎧

−⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡

−
−=

6
18
12

1148148.01.0
013.0
001

}{d

121 =d

6.21)12(3.0182 =+=d

4)18)(148148.0()12(1.063 −=−−−−=d

Back substitution:

⎪⎭

⎪
⎬
⎫

⎪⎩

⎪
⎨
⎧

−⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
−

−
=

4
6.21

12

351852.500
7.14.50
1210

}{x

747405.0
351852.5

4
3 −=

−
=x

235294.4
4.5

)747405.0(7.16.21
2 −=

−
−−

=x

972318.1
10

)747405.0)(1()235294.4(212
1 =

−−−−−
=x

9.5 The system can be written in matrix form as

⎪⎭

⎪
⎬
⎫

⎪⎩

⎪
⎨
⎧

−
−
−

=
⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡

−−
−−

−−
=

20
34
38

}{
218

713
162

][bA

Partial pivot:

 89

⎪⎭

⎪
⎬
⎫

⎪⎩

⎪
⎨
⎧

−
−
−

=
⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡

−−
−−

−−
=

38
34
20

}{
162

713
218

][bA

Forward eliminate

f21 = −3/(−8) = 0.375 f31 = 2/(−8) = −0.25

5.175.50

75.7375.10
218

][
⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡

−−
−

−−
=A

Pivot again

⎪⎭

⎪
⎬
⎫

⎪⎩

⎪
⎨
⎧

−
−
−

=
⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡

−
−−
−−

=
34
38
20

}{
75.7375.10

5.175.50
218

][bA

f21 = −0.25 f31 = 0.375

Forward eliminate

f32 = −1.375/(−5.75) = 0.23913

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
−−
−−

=
108696.800

5.175.50
218

][A

Therefore, the LU decomposition is

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
−−
−−

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
−=

108696.800
5.175.50

218

123913.0375.0
0125.0
001

]]{[UL

Forward elimination

⎪⎭

⎪
⎬
⎫

⎪⎩

⎪
⎨
⎧

−
−
−

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
−=

34
38
20

123913.0375.0
0125.0
001

}{d

201 −=d

43)20)(25.0(382 −=−−−−=d

21739.16)43(23913.0)20(375.0343 −=−−−−−=d

Back substitution:

 90

⎪⎭

⎪
⎬
⎫

⎪⎩

⎪
⎨
⎧

−
−
−

=
⎪⎭

⎪
⎬
⎫

⎪⎩

⎪
⎨
⎧

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
−−
−−

21739.16
43
20

108696.800
5.175.50

218

3

2

1

x

x

x

2
108696.8

21739.16
3 −=

−
=x

8
75.5

)2)(5.1(43
2 =

−
−−−−

=x

4
8

)2)(2()8(120
1 =

−
−−−−−

=x

9.6 Here is an M-file to generate the LU decomposition without pivoting

function [L, U] = LUNaive(A)

% LUNaive(A):

% LU decomposition without pivoting.

% input:

% A = coefficient matrix

% output:

% L = lower triangular matrix

% U = upper triangular matrix

[m,n] = size(A);

if m~=n, error('Matrix A must be square'); end

L = eye(n);

U = A;

% forward elimination

for k = 1:n-1

 for i = k+1:n

 L(i,k) = U(i,k)/U(k,k);

 U(i,k) = 0;

 U(i,k+1:n) = U(i,k+1:n)-L(i,k)*U(k,k+1:n);

 end

end

Test with Prob. 9.3

>> A = [10 2 -1;-3 -6 2;1 1 5];

>> [L,U] = LUnaive(A)

L =

 1.0000 0 0

 -0.3000 1.0000 0

 0.1000 -0.1481 1.0000

U =

 10.0000 2.0000 -1.0000

 0 -5.4000 1.7000

 0 0 5.3519

 91

Verification that [L][U] = [A].

>> L*U

ans =

 10.0000 2.0000 -1.0000

 -3.0000 -6.0000 2.0000

 1.0000 1.0000 5.0000

Check using the lu function,

>> [L,U]=lu(A)

L =

 1.0000 0 0

 -0.3000 1.0000 0

 0.1000 -0.1481 1.0000

U =

 10.0000 2.0000 -1.0000

 0 -5.4000 1.7000

 0 0 5.3519

9.7 The result of Example 9.4 can be substituted into Eq. (9.14) to give

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡

⎥
⎥

⎦

⎤

⎢
⎢

⎣

⎡
==

110101.6

9165.201833.4
45366.22123724.644949.2

110101.69165.2045366.22

1833.4123724.6

44949.2

][][][UUA T

The multiplication can be implemented as in

000001.644949.2 2
11 ==a

1544949.2123724.612 =×=a

00002.5544949.245366.2213 =×=a

15123724.644949.221 =×=a

99999.541833.4123724.6 22
22 =+=a

2251833.49165.20123724.645366.22 2
22 =×+×=a

00002.5545366.2244949.231 =×=a

2259165.201833.445366.22123724.632 =×+×=a

0002.979110101.69165.2045366.22 222
33 =++=a

 92

9.8 (a) For the first row (i = 1), Eq. (9.15) is employed to compute

828427.281111 === au

Then, Eq. (9.16) can be used to determine

071068.7
828427.2

20

11

12
12 ===

u

a
u

303301.5
828427.2

15

11

13
13 ===

u

a
u

For the second row (i = 2),

477226.5)071068.7(80 22
122222 =−=−= uau

282177.2
477226.5

)303301.5(071068.750

22

131223
23 =

−
=

−
=

u

uua
u

For the third row (i = 3),

163978.5)282177.2()303301.5(60 222
23

2
133333 =−−=−−= uuau

Thus, the Cholesky decomposition yields

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
=

163978.5

282177.2477226.5
303301.5071068.7828427.2

][U

The validity of this decomposition can be verified by substituting it and its transpose into

Eq. (9.14) to see if their product yields the original matrix [A]. This is left for an exercise.

(b)
>> A = [8 20 15;20 80 50;15 50 60];

>> U = chol(A)

U =

 2.8284 7.0711 5.3033

 0 5.4772 2.2822

 0 0 5.1640

(c) The solution can be obtained by hand or by MATLAB. Using MATLAB:

>> b = [50;250;100];

>> d=U'\b

d =

 93

 17.6777

 22.8218

 -8.8756

>> x=U\d

x =

 -2.7344

 4.8828

 -1.7187

 9.9 Here is an M-file to generate the Cholesky decomposition without pivoting

function U = cholesky(A)

% cholesky(A):

% cholesky decomposition without pivoting.

% input:

% A = coefficient matrix

% output:

% U = upper triangular matrix

[m,n] = size(A);

if m~=n, error('Matrix A must be square'); end

for i = 1:n

 s = 0;

 for k = 1:i-1

 s = s + U(k, i) ^ 2;

 end

 U(i, i) = sqrt(A(i, i) - s);

 for j = i + 1:n

 s = 0;

 for k = 1:i-1

 s = s + U(k, i) * U(k, j);

 end

 U(i, j) = (A(i, j) - s) / U(i, i);

 end

end

Test with Prob. 9.8

>> A = [8 20 15;20 80 50;15 50 60];

>> cholesky(A)

ans =

 2.8284 7.0711 5.3033

 0 5.4772 2.2822

 0 0 5.1640

Check with the chol function

>> U = chol(A)

U =

 2.8284 7.0711 5.3033

 0 5.4772 2.2822

 0 0 5.1640

 94

CHAPTER 10

10.1 First, compute the LU decomposition The matrix to be evaluated is

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
−−

−

511
263
1210

Multiply the first row by f21 = –3/10 = –0.3 and subtract the result from the second row to

eliminate the a21 term. Then, multiply the first row by f31 = 1/10 = 0.1 and subtract the

result from the third row to eliminate the a31 term. The result is

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
−

−

1.58.00
7.14.50
1210

Multiply the second row by f32 = 0.8/(–5.4) = –0.148148 and subtract the result from the

third row to eliminate the a32 term.

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
−

−

351852.500
7.14.50
1210

Therefore, the LU decomposition is

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
−

−

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡

−
−=

351852.500
7.14.50
1210

1148148.01.0
013.0
001

]]{[UL

The first column of the matrix inverse can be determined by performing the forward-

substitution solution procedure with a unit vector (with 1 in the first row) as the right-hand-

side vector. Thus, the lower-triangular system, can be set up as,

⎪⎭

⎪
⎬
⎫

⎪⎩

⎪
⎨
⎧

=
⎪⎭

⎪
⎬
⎫

⎪⎩

⎪
⎨
⎧

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡

−
−

0
0
1

1148148.01.0
013.0
001

3

2

1

d

d

d

and solved with forward substitution for {d}T = ⎣ ⎦055556.0 3.0 1 − . This vector can then

be used as the right-hand side of the upper triangular system,

⎪⎭

⎪
⎬
⎫

⎪⎩

⎪
⎨
⎧

−
=

⎪⎭

⎪
⎬
⎫

⎪⎩

⎪
⎨
⎧

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
−

−

055556.0
3.0

1

351852.500
7.14.50
1210

3

2

1

x

x

x

which can be solved by back substitution for the first column of the matrix inverse,

 95

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡

−
−=−

00010381.0
00058824.0
000.110727

][1A

To determine the second column, Eq. (9.8) is formulated as

⎪⎭

⎪
⎬
⎫

⎪⎩

⎪
⎨
⎧

=
⎪⎭

⎪
⎬
⎫

⎪⎩

⎪
⎨
⎧

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡

−
−

0
1
0

1148148.01.0
013.0
001

3

2

1

d

d

d

This can be solved with forward substitution for {d}T = ⎣ ⎦148148.0 1 0 , and the results

are used with [U] to determine {x} by back substitution to generate the second column of

the matrix inverse,

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡

−
−−=−

0027682.0010381.0
0176471.0058824.0
0038062.00.110727

][1A

Finally, the same procedures can be implemented with {b}T = ⎣ ⎦1 0 0 to solve for {d}T =

⎣ ⎦1 0 0 , and the results are used with [U] to determine {x} by back substitution to

generate the third column of the matrix inverse,

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡

−
−−=−

186851.0027682.0010381.0
058824.0176471.0058824.0
00692.0038062.00.110727

][1A

This result can be checked by multiplying it times the original matrix to give the identity

matrix. The following MATLAB session can be used to implement this check,

>> A = [10 2 -1;-3 -6 2;1 1 5];

>> AI = [0.110727 0.038062 0.00692;

-0.058824 -0.176471 0.058824;

-0.010381 0.027682 0.186851];

>> A*AI

ans =

 1.0000 -0.0000 -0.0000

 0.0000 1.0000 -0.0000

 -0.0000 0.0000 1.0000

10.2 The system can be written in matrix form as

⎪⎭

⎪
⎬
⎫

⎪⎩

⎪
⎨
⎧

−
−
−

=
⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡

−−
−−
−−

=
20
34
38

}{
713
162
218

][bA

Forward eliminate

f21 = 2/(−8) = −0.25 f31 = −3/(−8) = 0.375

 96

75.7375.10

5.175.50
218

][
⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡

−
−−
−−

=A

Forward eliminate

f32 = −1.375/(−5.75) = 0.23913

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
−−
−−

=
108696.800

5.175.50
218

][A

Therefore, the LU decomposition is

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
−−
−−

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
−=

108696.800
5.175.50

218

123913.0375.0
0125.0
001

]]{[UL

The first column of the matrix inverse can be determined by performing the forward-

substitution solution procedure with a unit vector (with 1 in the first row) as the right-hand-

side vector. Thus, the lower-triangular system, can be set up as,

⎪⎭

⎪
⎬
⎫

⎪⎩

⎪
⎨
⎧

=
⎪⎭

⎪
⎬
⎫

⎪⎩

⎪
⎨
⎧

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
−

0
0
1

123913.0375.0
0125.0
001

3

2

1

d

d

d

and solved with forward substitution for {d}T = ⎣ ⎦434783.0 25.0 1 − . This vector can then

be used as the right-hand side of the upper triangular system,

⎪⎭

⎪
⎬
⎫

⎪⎩

⎪
⎨
⎧

−
=

⎪⎭

⎪
⎬
⎫

⎪⎩

⎪
⎨
⎧

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
−−
−−

434783.0
25.0
1

108696.800
5.175.50

218

3

2

1

x

x

x

which can be solved by back substitution for the first column of the matrix inverse,

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡

−
−=−

00053619.0
00029491.0
000.115282-

][1A

To determine the second column, Eq. (9.8) is formulated as

⎪⎭

⎪
⎬
⎫

⎪⎩

⎪
⎨
⎧

=
⎪⎭

⎪
⎬
⎫

⎪⎩

⎪
⎨
⎧

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
−

0
1
0

123913.0375.0
0125.0
001

3

2

1

d

d

d

This can be solved with forward substitution for {d}T = ⎣ ⎦23913.010 − , and the results

are used with [U] to determine {x} by back substitution to generate the second column of

the matrix inverse,

 97

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡

−−
−−
−

=−

0029491.0053619.0
016622.0029491.0
0013405.00.115282-

][1A

Finally, the same procedures can be implemented with {b}T = ⎣ ⎦1 0 0 to solve for {d}T =

⎣ ⎦1 0 0 , and the results are used with [U] to determine {x} by back substitution to

generate the third column of the matrix inverse,

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡

−−
−−−
−−

=−

123324.0029491.0053619.0
032172.016622.0029491.0
034853.0013405.00.115282-

][1A

10.3 The following solution is generated with MATLAB.

(a)
>> A = [15 -3 -1;-3 18 -6;-4 -1 12];

>> format long

>> AI = inv(A)

AI =

 0.07253886010363 0.01278065630397 0.01243523316062

 0.02072538860104 0.06079447322971 0.03212435233161

 0.02590673575130 0.00932642487047 0.09015544041451

(b)
>> b = [3800 1200 2350]';

>> format short

>> c = AI*b

c =

 320.2073

 227.2021

 321.5026

(c) The impact of a load to reactor 3 on the concentration of reactor 1 is specified by the

element 1
13
−a = 0.0124352. Therefore, the increase in the mass input to reactor 3 needed to

induce a 10 g/m3 rise in the concentration of reactor 1 can be computed as

d

g
1667.804

0124352.0

10
3 ==∆b

(d) The decrease in the concentration of the third reactor will be

33
m

g
285.153316.29534.12)250(009326.0)500(0259067.0 =+=+=∆c

10.4 The mass balances can be written and the result written in matrix form as

 98

⎪
⎪
⎭

⎪⎪
⎬

⎫

⎪
⎪
⎩

⎪⎪
⎨

⎧

=

⎪
⎪
⎭

⎪
⎪
⎬

⎫

⎪
⎪
⎩

⎪
⎪
⎨

⎧

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

−−
−−−

−
−

−

0
0

0

40013
211810

00910
00033
00106

0303

0101

5

4

3

2

1

cQ

cQ

c

c

c

c

c

MATLAB can then be used to determine the matrix inverse

>> Q = [6 0 -1 0 0;-3 3 0 0 0;0 -1 9 0 0;0 -1 -8 11 -2;-3 -1 0 0 4];

>> inv(Q)

ans =

 0.1698 0.0063 0.0189 0 0

 0.1698 0.3396 0.0189 0 0

 0.0189 0.0377 0.1132 0 0

 0.0600 0.0746 0.0875 0.0909 0.0455

 0.1698 0.0896 0.0189 0 0.2500

The concentration in reactor 5 can be computed using the elements of the matrix inverse as

in,

528.24547.7981.1650)8(0189.020)5(1698.00303
1

530101
1

515 =+=+=+= −− cQacQac

10.5 The problem can be written in matrix form as

⎪
⎪
⎪

⎭

⎪
⎪
⎪

⎬

⎫

⎪
⎪
⎪

⎩

⎪
⎪
⎪

⎨

⎧

=

⎪
⎪
⎪

⎭

⎪⎪
⎪

⎬

⎫

⎪
⎪
⎪

⎩

⎪⎪
⎪

⎨

⎧

⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢

⎣

⎡

−−

−−
−−−

−

v

h

v

h

v

h

F

F

F

F

F

F

V

V

H

F

F

F

,3

,3

,2

,2

,1

,1

3

2

2

3

2

1

100866.000
0005.010
010005.0
00101866.0
000866.005.0
0005.00866.0

MATLAB can then be used to solve for the matrix inverse,

>> A = [0.866 0 -0.5 0 0 0;

0.5 0 0.866 0 0 0;

-0.866 -1 0 -1 0 0;

-0.5 0 0 0 -1 0;

0 1 0.5 0 0 0;

0 0 -0.866 0 0 -1];

>> AI = inv(A)

AI =

 0.8660 0.5000 0 0 0 0

 0.2500 -0.4330 0 0 1.0000 0

 -0.5000 0.8660 0 0 0 0

 -1.0000 0.0000 -1.0000 0 -1.0000 0

 -0.4330 -0.2500 0 -1.0000 0 0

 0.4330 -0.7500 0 0 0 -1.0000

 99

The forces in the members resulting from the two forces can be computed using the

elements of the matrix inverse as in,

100001000)500(0)2000(5.0,3
1

15,1
1

121 −=+−=−+−=+= −−
hv FaFaF

366500866)500(1)2000(433.0,3
1

25,1
1

222 =−=−+−−=+= −−
hv FaFaF

173201732)500(0)2000(866.0,3
1

35,1
1

323 −=+−=−+−=+= −−
hv FaFaF

10.6 The matrix can be scaled by dividing each row by the element with the largest absolute

value

>> A = [8/(-10) 2/(-10) 1;1 1/(-9) 3/(-9);1 -1/15 6/15]

A =

 -0.8000 -0.2000 1.0000

 1.0000 -0.1111 -0.3333

 1.0000 -0.0667 0.4000

MATLAB can then be used to determine each of the norms,

>> norm(A,'fro')

ans =

 1.9920

>> norm(A,1)

ans =

 2.8000

>> norm(A,inf)

ans =

 2

10.7 Prob. 10.2:

>> A = [-8 1 -2;2 -6 -1;-3 -1 7];

>> norm(A,'fro')

ans =

 13

>> norm(A,inf)

ans =

 11

Prob. 10.3:

>> A = [15 -3 -1;-3 18 -6;-4 -1 12]

 100

>> norm(A,'fro')

ans =

 27.6586

>> norm(A,inf)

ans =

 27

10.8 (a) Spectral norm

>> A = [1 4 9 16;4 9 16 25;9 16 25 36;16 25 36 49];

>> cond(A)

ans =

 8.8963e+016

(b) Row-sum norm

>> cond(A,inf)

Warning: Matrix is close to singular or badly scaled.

 Results may be inaccurate. RCOND = 3.037487e-019.

(Type "warning off MATLAB:nearlySingularMatrix" to suppress this

warning.)

> In cond at 45

ans =

 3.2922e+018

10.9 (a) The matrix to be evaluated is

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡

1749
124
1416

The row-sum norm of this matrix is 49 + 7 + 1 = 57. The inverse is

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡

−
−−

−

5333.08.23333.2
4.01.15.1

0667.01.01667.0

The row-sum norm of the inverse is ⎪-2.3333⎪ + 2.8 + 0.5333 = 5.6667. Therefore, the

condition number is

Cond[A] = 57(5.6667) = 323

This can be verified with MATLAB,

>> A = [16 4 1;4 2 1;49 7 1];

>> cond(A,inf)

 101

ans =

 323.0000

(b) Spectral norm:

>> A = [16 4 1;4 2 1;49 7 1];

>> cond(A)

ans =

 216.1294

Frobenius norm:

>> cond(A,'fro')

ans =

 217.4843

10.10 The spectral condition number can be evaluated as

>> A = hilb(10);

>> N = cond(A)

N =

 1.6025e+013

The digits of precision that could be lost due to ill-conditioning can be calculated as

>> c = log10(N)

c =

 13.2048

Thus, about 13 digits could be suspect. A right-hand side vector can be developed

corresponding to a solution of ones:

>> b=[sum(A(1,:)); sum(A(2,:)); sum(A(3,:)); sum(A(4,:)); sum(A(5,:));

sum(A(6,:)); sum(A(7,:)); sum(A(8,:)); sum(A(9,:)); sum(A(10,:))]

b =

 2.9290

 2.0199

 1.6032

 1.3468

 1.1682

 1.0349

 0.9307

 0.8467

 0.7773

 0.7188

The solution can then be generated by left division

>> x = A\b

 102

x =

 1.0000

 1.0000

 1.0000

 1.0000

 0.9999

 1.0003

 0.9995

 1.0005

 0.9997

 1.0001

The maximum and mean errors can be computed as

>> e=max(abs(x-1))

e =

 5.3822e-004

>> e=mean(abs(x-1))

e =

 1.8662e-004

Thus, some of the results are accurate to only about 3 to 4 significant digits. Because

MATLAB represents numbers to 15 significant digits, this means that about 11 to 12 digits

are suspect.

10.11 First, the Vandermonde matrix can be set up

>> x1 = 4;x2=2;x3=7;x4=10;x5=3;x6=5;

>> A = [x1^5 x1^4 x1^3 x1^2 x1 1;x2^5 x2^4 x2^3 x2^2 x2 1;x3^5 x3^4

x3^3 x3^2 x3 1;x4^5 x4^4 x4^3 x4^2 x4 1;x5^5 x5^4 x5^3 x5^2 x5 1;x6^5

x6^4 x6^3 x6^2 x6 1]

A =

 1024 256 64 16 4 1

 32 16 8 4 2 1

 16807 2401 343 49 7 1

 100000 10000 1000 100 10 1

 243 81 27 9 3 1

 3125 625 125 25 5 1

The spectral condition number can be evaluated as

>> N = cond(A)

N =

 1.4492e+007

The digits of precision that could be lost due to ill-conditioning can be calculated as

>> c = log10(N)

c =

 7.1611

 103

Thus, about 7 digits might be suspect. A right-hand side vector can be developed

corresponding to a solution of ones:

>> b=[sum(A(1,:));sum(A(2,:));sum(A(3,:));sum(A(4,:));sum(A(5,:));

sum(A(6,:))]

b =

 1365

 63

 19608

 111111

 364

 3906

The solution can then be generated by left division

>> format long

>> x=A\b

x =

 1.00000000000000

 0.99999999999991

 1.00000000000075

 0.99999999999703

 1.00000000000542

 0.99999999999630

The maximum and mean errors can be computed as

>> e = max(abs(x-1))

e =

 5.420774940034789e-012

>> e = mean(abs(x-1))

e =

 2.154110223528960e-012

Some of the results are accurate to about 12 significant digits. Because MATLAB

represents numbers to about 15 significant digits, this means that about 3 digits are suspect.

Thus, for this case, the condition number tends to exaggerate the impact of ill-conditioning.

 104

CHAPTER 11

11.1 (a) The first iteration can be implemented as

25.51
8.0

)0(4.041

8.0

4.041 2
1 =

+
=

+
=

x
x

875.56
8.0

)0(4.0)25.51(4.025

8.0

4.04.025 31
2 =

++
=

++
=

xx
x

6875.159
8.0

)875.56(4.0105

8.0

4.0105 2
3 =

+
=

+
=

x
x

Second iteration:

6875.79
8.0

)875.56(4.041
1 =

+
=x

9375.150
8.0

)6875.159(4.0)6875.79(4.025
2 =

++
=x

7188.206
8.0

)9375.150(4.0105
3 =

+
=x

The error estimates can be computed as

%69.35%100
6875.79

25.516875.79
1, =×

−
=aε

%32.62%100
9375.150

875.569375.150
2, =×

−
=aε

%75.22%100
7188.206

6875.1597188.206
3, =×

−
=aε

The remainder of the calculation proceeds until all the errors fall below the stopping

criterion of 5%. The entire computation can be summarized as

iteration unknown value εa maximum εa

1 x1 51.25 100.00%

 x2 56.875 100.00%

 x3 159.6875 100.00% 100.00%

2 x1 79.6875 35.69%

 x2 150.9375 62.32%

 x3 206.7188 22.75% 62.32%

3 x1 126.7188 37.11%

 x2 197.9688 23.76%

 105

 x3 230.2344 10.21% 37.11%

4 x1 150.2344 15.65%

 x2 221.4844 10.62%

 x3 241.9922 4.86% 15.65%

5 x1 161.9922 7.26%

 x2 233.2422 5.04%

 x3 247.8711 2.37% 7.26%

6 x1 167.8711 3.50%

 x2 239.1211 2.46%

 x3 250.8105 1.17% 3.50%

Thus, after 6 iterations, the maximum error is 3.5% and we arrive at the result: x1 =

167.8711, x2 = 239.1211 and x3 = 250.8105.

(b) The same computation can be developed with relaxation where λ = 1.2.

First iteration:

25.51
8.0

)0(4.041

8.0

4.041 2
1 =

+
=

+
=

x
x

Relaxation yields: 5.61)0(2.0)25.51(2.11 =−=x

62
8.0

)0(4.0)5.61(4.025

8.0

4.04.025 31
2 =

++
=

++
=

xx
x

Relaxation yields: 4.74)0(2.0)62(2.12 =−=x

45.168
8.0

)62(4.0105

8.0

4.0105 2
3 =

+
=

+
=

x
x

Relaxation yields: 14.202)0(2.0)45.168(2.13 =−=x

Second iteration:

45.88
8.0

)62(4.041
1 =

+
=x

Relaxation yields: 84.93)5.61(2.0)45.88(2.11 =−=x

24.179
8.0

)14.202(4.0)84.93(4.025
2 =

++
=x

Relaxation yields: 208.200)4.74(2.0)24.179(2.12 =−=x

354.231
8.0

)208.200(4.0105
3 =

+
=x

 106

Relaxation yields: 1968.237)14.202(2.0)354.231(2.13 =−=x

The error estimates can be computed as

%46.34%100
84.93

5.6184.93
1, =×

−
=aε

%84.62%100
208.200

4.74208.200
2, =×

−
=aε

%78.14%100
1968.237

14.2021968.237
3, =×

−
=aε

The remainder of the calculation proceeds until all the errors fall below the stopping

criterion of 5%. The entire computation can be summarized as

iteration unknown value relaxation εa maximum εa

1 x1 51.25 61.5 100.00%

 x2 62 74.4 100.00%

 x3 168.45 202.14 100.00% 100.000%

2 x1 88.45 93.84 34.46%

 x2 179.24 200.208 62.84%

 x3 231.354 237.1968 14.78% 62.839%

3 x1 151.354 162.8568 42.38%

 x2 231.2768 237.49056 15.70%

 x3 249.99528 252.55498 6.08% 42.379%

4 x1 169.99528 171.42298 5.00%

 x2 243.23898 244.38866 2.82%

 x3 253.44433 253.6222 0.42% 4.997%

Thus, relaxation speeds up convergence. After 6 iterations, the maximum error is 4.997%

and we arrive at the result: x1 = 171.423, x2 = 244.389 and x3 = 253.622.

11.2 The first iteration can be implemented as

7.2
10

0)0(227

10

227 32
1 =

+−
=

+−
=

xx
x

9.8
6

)0(2)7.2(35.61

6

235.61 31
2 =

−
−+−

=
−

−+−
=

xx
x

62.6
5

9.8)7.2(5.21

5

5.21 21
3 −=

−−−
=

−−−
=

xx
x

Second iteration:

 107

258.0
10

62.6)9.8(227
1 =

−−
=x

914333.7
6

)62.6(2)258.0(35.61
2 =

−
−−+−

=x

934467.5
5

914333.7)258.0(5.21
3 −=

−−−
=x

The error estimates can be computed as

%947%100
258.0

7.2258.0
1, =×

−
=aε

%45.12%100
914333.7

9.8914333.7
2, =×

−
=aε

%55.11%100
934467.5

)62.6(934467.5
3, =×

−
−−−

=aε

The remainder of the calculation proceeds until all the errors fall below the stopping

criterion of 5%. The entire computation can be summarized as

iteration unknown value εa maximum εa

1 x1 2.7 100.00%

 x2 8.9 100.00%

 x3 -6.62 100.00% 100%

2 x1 0.258 946.51%

 x2 7.914333 12.45%

 x3 -5.93447 11.55% 946%

3 x1 0.523687 50.73%

 x2 8.010001 1.19%

 x3 -6.00674 1.20% 50.73%

4 x1 0.497326 5.30%

 x2 7.999091 0.14%

 x3 -5.99928 0.12% 5.30%

5 x1 0.500253 0.59%

 x2 8.000112 0.01%

 x3 -6.00007 0.01% 0.59%

Thus, after 5 iterations, the maximum error is 0.59% and we arrive at the result: x1 =

0.500253, x2 = 8.000112 and x3 = −6.00007.

11.3 The first iteration can be implemented as

7.2
10

0)0(227

10

227 32
1 =

+−
=

+−
=

xx
x

 108

25.10
6

)0(2)0(35.61

6

235.61 31
2 =

−
−+−

=
−

−+−
=

xx
x

3.4
5

005.21

5

5.21 21
3 −=

−−−
=

−−−
=

xx
x

Second iteration:

22.0
10

3.4)25.10(227
1 =

−−
=x

466667.7
6

)3.4(2)7.2(35.61
2 =

−
−−+−

=x

89.6
5

25.10)7.2(5.21
3 −=

−−−
=x

The error estimates can be computed as

%1127%100
258.0

7.222.0
1, =×

−
=aε

%28.37%100
466667.7

25.10466667.7
2, =×

−
=aε

%59.37%100
89.6

)3.4(89.6
3, =×

−
−−−

=aε

The remainder of the calculation proceeds until all the errors fall below the stopping

criterion of 5%. The entire computation can be summarized as

iteration unknown value εa maximum εa

1 x1 2.7 100.00%

 x2 10.25 100.00%

 x3 -4.3 100.00% 100.00%

2 x1 0.22 1127.27%

 x2 7.466667 37.28%

 x3 -6.89 37.59% 1127.27%

3 x1 0.517667 57.50%

 x2 7.843333 4.80%

 x3 -5.83733 18.03% 57.50%

4 x1 0.5476 5.47%

 x2 8.045389 2.51%

 x3 -5.9722 2.26% 5.47%

5 x1 0.493702 10.92%

 x2 7.985467 0.75%

 109

 x3 -6.0186 0.77% 10.92%

6 x1 0.501047 1.47%

 x2 7.99695 0.14%

 x3 -5.99583 0.38% 1.47%

Thus, after 6 iterations, the maximum error is 1.47% and we arrive at the result: x1 =

0.501047, x2 = 7.99695 and x3 = −5.99583.

11.4 The first iteration can be implemented as

3333.253
15

0)0(33800

15

33800 32
1 =

++
=

++
=

cc
c

8889.108
18

)0(6)3333.253(31200

18

631200 31
2 =

++
=

++
=

cc
c

3519.289
12

8889.108)3333.253(42350

12

42350 21
3 =

++
=

++
=

cc
c

Second iteration:

4012.294
15

3519.289)889.108(33800
1 =

++
=c

1842.212
18

)3519.289(6)4012.294(31200
2 =

++
=c

6491.311
12

1842.212)4012.294(42350
3 =

++
=c

The error estimates can be computed as

%95.13%100
4012.294

3333.2534012.294
1, =×

−
=aε

%68.48%100
1842.212

8889.1081842.212
2, =×

−
=aε

%15.7%100
6491.311

3519.2896491.311
3, =×

−
=aε

The remainder of the calculation can be summarized as

iteration unknown value εa maximum εa

1 x1 253.3333 100.00%

 x2 108.8889 100.00%

 x3 289.3519 100.00% 100.00%

 110

2 x1 294.4012 13.95%

 x2 212.1842 48.68%

 x3 311.6491 7.15% 48.68%

3 x1 316.5468 7.00%

 x2 223.3075 4.98%

 x3 319.9579 2.60% 7.00%

4 x1 319.3254 0.87%

 x2 226.5402 1.43%

 x3 321.1535 0.37% 1.43%

5 x1 320.0516 0.23%

 x2 227.0598 0.23%

 x3 321.4388 0.09% 0.23%

Note that after several more iterations, we arrive at the result: x1 = 320.2073, x2 = 227.2021

and x3 = 321.5026.

11.5 The equations must first be rearranged so that they are diagonally dominant

3473

3862

2028

321

321

321

−=+−−

−=−−

−=−+−

xxx

xxx

xxx

(a) The first iteration can be implemented as

5.2
8

)0(2020

8

220 32
1 =

−
+−−

=
−

+−−
=

xx
x

166667.7
6

0)5.2(238

6

238 31
2 =

−
+−−

=
−

+−−
=

xx
x

761905.2
7

166667.7)5.2(334

7

334 21
3 −=

++−
=

++−
=

xx
x

Second iteration:

08631.4
8

)761905.2(2166667.720
1 =

−
−+−−

=x

155754.8
6

)761905.2()08631.4(238

6

238 31
2 =

−
−+−−

=
−

+−−
=

xx
x

94076.1
7

155754.8)08631.4(334

7

334 21
3 −=

++−
=

++−
=

xx
x

The error estimates can be computed as

 111

%82.38%100
08631.4

5.208631.4
1, =×

−
=aε

%13.12%100
155754.8

166667.7155754.8
2, =×

−
=aε

%31.42%100
94076.1

)761905.2(94076.1
3, =×

−
−−−

=aε

The remainder of the calculation proceeds until all the errors fall below the stopping

criterion of 5%. The entire computation can be summarized as

iteration unknown value εa maximum εa

0 x1 0

 x2 0

 x3 0

1 x1 2.5 100.00%

 x2 7.166667 100.00%

 x3 -2.7619 100.00% 100.00%

2 x1 4.08631 38.82%

 x2 8.155754 12.13%

 x3 -1.94076 42.31% 42.31%

3 x1 4.004659 2.04%

 x2 7.99168 2.05%

 x3 -1.99919 2.92% 2.92%

Thus, after 3 iterations, the maximum error is 2.92% and we arrive at the result: x1 =

4.004659, x2 = 7.99168 and x3 = −1.99919.

(b) The same computation can be developed with relaxation where λ = 1.2.

First iteration:

5.2
8

)0(2020

8

220 32
1 =

−
+−−

=
−

+−−
=

xx
x

Relaxation yields: 3)0(2.0)5.2(2.11 =−=x

333333.7
6

0)3(238

6

238 31
2 =

−
+−−

=
−

+−−
=

xx
x

Relaxation yields: 8.8)0(2.0)333333.7(2.12 =−=x

3142857.2
7

8.8)3(334

7

334 21
3 −=

++−
=

++−
=

xx
x

Relaxation yields: 7771429.2)0(2.0)3142857.2(2.13 −=−−=x

 112

Second iteration:

2942857.4
8

)7771429.2(28.820

8

220 32
1 =

−
−+−−

=
−

+−−
=

xx
x

Relaxation yields: 5531429.4)3(2.0)2942857.4(2.11 =−=x

3139048.8
6

7771429.2)5531429.4(238

6

238 31
2 =

−
−−−

=
−

+−−
=

xx
x

Relaxation yields: 2166857.8)8.8(2.0)3139048.8(2.12 =−=x

7319837.1
7

2166857.8)5531429.4(334

7

334 21
3 −=

++−
=

++−
=

xx
x

Relaxation yields: 5229518.1)7771429.2(2.0)7319837.1(2.13 −=−−−=x

The error estimates can be computed as

%11.34%100
5531429.4

35531429.4
1, =×

−
=aε

%1.7%100
2166857.8

8.82166857.8
2, =×

−
=aε

%35.82%100
5229518.1

)7771429.2(5229518.1
3, =×

−
−−−

=aε

The remainder of the calculation proceeds until all the errors fall below the stopping

criterion of 5%. The entire computation can be summarized as

iteration unknown value relaxation εa maximum εa

1 x1 2.5 3 100.00%

 x2 7.3333333 8.8 100.00%

 x3 -2.314286 -2.777143 100.00% 100.000%

2 x1 4.2942857 4.5531429 34.11%

 x2 8.3139048 8.2166857 7.10%

 x3 -1.731984 -1.522952 82.35% 82.353%

3 x1 3.9078237 3.7787598 20.49%

 x2 7.8467453 7.7727572 5.71%

 x3 -2.12728 -2.248146 32.26% 32.257%

4 x1 4.0336312 4.0846055 7.49%

 x2 8.0695595 8.12892 4.38%

 x3 -1.945323 -1.884759 19.28% 19.280%

5 x1 3.9873047 3.9678445 2.94%

 x2 7.9700747 7.9383056 2.40%

 113

 x3 -2.022594 -2.050162 8.07% 8.068%

6 x1 4.0048286 4.0122254 1.11%

 x2 8.0124354 8.0272613 1.11%

 x3 -1.990866 -1.979007 3.60% 3.595%

Thus, relaxation actually seems to retard convergence. After 6 iterations, the maximum

error is 3.595% and we arrive at the result: x1 = 4.0122254, x2 = 8.0272613 and x3 =

−1.979007.

11.6 As ordered, none of the sets will converge. However, if Set 1 and 3 are reordered so that

they are diagonally dominant, they will converge on the solution of (1, 1, 1).

Set 1: 8x + 3y + z = 12

 2x + 4y – z = 5

−6x +7z = 1

Set 3: 3x + y − z = 3

 x + 4y – z = 4

 x + y +5z =7

Because it is not diagonally dominant, Set 2 will not converge on the correct solution of (1,

1, 1). However, it will also not diverge. Rather, it will oscillate. The way that this occurs

depends on how the equations are ordered. For example, if they can be ordered as

−2x + 4y − 5z = −3

 2y – z = 1

 −x + 3y + 5z = 7

For this case, Gauss-Seidel iterations yields

iteration unknown value εa maximum εa

1 x1 1.5 100.00%

 x2 0.5 100.00%

 x3 1.4 100.00% 100.00%

2 x1 -1 250.00%

 x2 1.2 58.33%

 x3 0.48 191.67% 250.00%

3 x1 2.7 137.04%

 x2 0.74 62.16%

 x3 1.496 67.91% 137.04%

4 x1 -0.76 455.26%

 x2 1.248 40.71%

 x3 0.4992 199.68% 455.26%

5 x1 2.748 127.66%

 x2 0.7496 66.49%

 x3 1.49984 66.72% 127.66%

6 x1 -0.7504 466.20%

 x2 1.24992 40.03%

 x3 0.499968 199.99% 466.20%

7 x1 2.74992 127.29%

 114

 x2 0.749984 66.66%

 x3 1.499994 66.67% 127.29%

8 x1 -0.75002 466.65%

 x2 1.249997 40.00%

 x3 0.499999 200.00% 466.65%

Alternatively, they can be ordered as

 −x + 3y + 5z = 7

 2y – z = 1

−2x + 4y − 5z = −3

For this case, Gauss-Seidel iterations yields

iteration unknown value εa maximum εa

1 x1 -7 100.00%

 x2 0.5 100.00%

 x3 3.8 100.00% 100.00%

2 x1 13.5 151.85%

 x2 2.4 79.17%

 x3 -2.88 231.94% 231.94%

3 x1 -14.2 195.07%

 x2 -0.94 355.32%

 x3 5.528 152.10% 355.32%

4 x1 17.82 179.69%

 x2 3.264 128.80%

 x3 -3.9168 241.14% 241.14%

5 x1 -16.792 206.12%

 x2 -1.4584 323.81%

 x3 6.15008 163.69% 323.81%

6 x1 19.3752 186.67%

 x2 3.57504 140.79%

 x3 -4.29005 243.36% 243.36%

7 x1 -17.7251 209.31%

 x2 -1.64502 317.32%

 x3 6.374029 167.31% 317.32%

8 x1 19.93507 188.91%

 x2 3.687014 144.62%

 x3 -4.42442 244.06% 244.06%

11.7 The equations to be solved are

xyyxyxf

yxxyxf

5),(

5.0),(

2
2

2
1

−−=

−++−=

The partial derivatives can be computed and evaluated at the initial guesses

 115

7)2.1(5151 6.35(1.2)2(1.2) 52

1 1.412(1.2) 12

0,20,2

0,10,1

−=−−=−−=
∂

∂
−=−=−=

∂

∂

−=
∂

∂
−=+−=+−=

∂

∂

x
y

f
yx

x

f

y

f
x

x

f

They can then be used to compute the determinant of the Jacobian for the first iteration is

2.6)6.3)(1()7(4.1 =−−−−−

The values of the functions can be evaluated at the initial guesses as

96.62.1)2.1)(2.1(52.1

94.02.15.02.12.1

2
0,2

2
0,1

−=−−=

−=−++−=

f

f

These values can be substituted into Eq. (11.12) to give

174194.0
2.6

)6.3)(94.0()4.1(96.6
2.1

26129.1
2.6

)1)(96.6()6.3(94.0
2.1

2

1

=
−−−−−

−=

=
−−−−−

−=

x

x

The computation can be repeated until an acceptable accuracy is obtained. The results are

summarized as

iteration x y εa1 εa2

0 1.2 1.2

1 1.26129 0.174194 4.859% 588.889%

2 1.234243 0.211619 2.191% 17.685%

3 1.233319 0.212245 0.075% 0.295%

4 1.233318 0.212245 0.000% 0.000%

11.8 (a) The equations can be set up in a form amenable to plotting as

2

2

5

1

xy

xy

−=

−=

These can be plotted as

 116

-2

-1

0

1

2

3

4

5

0 0.5 1 1.5 2 2.5

Thus, a solution seems to lie at about x = y = 1.6.

(b) The equations can be solved in a number of different ways. For example, the first

equation can be solved for x and the second solved for y. For this case, successive

substitution does not work

First iteration:

75.11)658312.1(

658312.1)5.1(55
2

22

=−=
=−=−=

y

yx

Second iteration:

9375.01)391941.1(

391941.1)75.1(5
2

2

=−=
=−=

y

x

Third iteration:

12094.31)030048.2(

030048.2)9375.0(5
2

2

=−=
=−=

y

x

Thus, the solution is moving away from the solution that lies at approximately x = y = 1.6.

An alternative solution involves solving the second equation for x and the first for y.

For this case, successive substitution does work

First iteration:

581139.1)581139.1(55

581139.115.11
22 =−=−=

=+=+=
xy

yx

Second iteration:

555269.1)606592.1(5

606592.1581139.1
2 =−=

==
y

x

Third iteration:

 117

563564.11)598521.1(

598521.1)555269.1(5
2

2

=−=
=−=

y

x

After several more iterations, the calculation converges on the solution of x = 1.600485 and

y = 1.561553.

(c) The equations to be solved are

22
2

2
1

5),(

1),(

xyyxf

yxyxf

−−=

−−=

The partial derivatives can be computed and evaluated at the initial guesses

y
y

f
x

x

f

y

f
x

x

f

2 2

1 2

0,20,2

0,10,1

−=
∂

∂
−=

∂

∂

−=
∂

∂
=

∂

∂

They can then be used to compute the determinant of the Jacobian for the first iteration is

2.6)6.3)(1()7(4.1 =−−−−−

The values of the functions can be evaluated at the initial guesses as

96.62.1)2.1)(2.1(52.1

94.02.15.02.12.1

2
0,2

2
0,1

−=−−=

−=−++−=

f

f

These values can be substituted into Eq. (11.12) to give

174194.0
2.6

)6.3)(94.0()4.1(96.6
2.1

26129.1
2.6

)1)(96.6()6.3(94.0
2.1

2

1

=
−−−−−

−=

=
−−−−−

−=

x

x

The computation can be repeated until an acceptable accuracy is obtained. The results are

summarized as

iteration ξ ψ εa1 εa2

0 1.5 1.5

1 1.604167 1.5625 6.494% 4.000%

2 1.600489 1.561553 0.230% 0.061%

3 1.600485 1.561553 0.000% 0.000%

 118

CHAPTER 12

12.1 The data can be tabulated as

i y (yi – y)
2

1 8.8 0.725904

2 9.4 0.063504

3 10 0.121104

4 9.8 0.021904

5 10.1 0.200704

6 9.5 0.023104

7 10.1 0.200704

8 10.4 0.559504

9 9.5 0.023104

10 9.5 0.023104

11 9.8 0.021904

12 9.2 0.204304

13 7.9 3.069504

14 8.9 0.565504

15 9.6 0.002704

16 9.4 0.063504

17 11.3 2.715904

18 10.4 0.559504

19 8.8 0.725904

20 10.2 0.300304

21 10 0.121104

22 9.4 0.063504

23 9.8 0.021904

24 10.6 0.898704

25 8.9 0.565504

Σ 241.3 11.8624

652.9
25

3.241
==y

703041.0
125

8624.11
=

−
=ys

494267.0703041.0 22 ==ys

%28.7%100
652.9

703041.0
c.v. =×=

12.2 The data can be sorted and then grouped. We assume that if a number falls on the border

between bins, it is placed in the lower bin.

lower upper Frequency

7.5 8 1

 119

8 8.5 0

8.5 9 4

9 9.5 7

9.5 10 6

10 10.5 5

10.5 11 1

11 11.5 1

The histogram can then be constructed as

0

1

2

3
4

5

6

7

8

7 8 9 10 11 12

Bin

F
re

q
u

e
n

c
y

12.3 The data can be tabulated as

i y (yi – y)
2

1 28.65 0.390625

2 28.65 0.390625

3 27.65 0.140625

4 29.25 1.500625

5 26.55 2.175625

6 29.65 2.640625

7 28.45 0.180625

8 27.65 0.140625

9 26.65 1.890625

10 27.85 0.030625

11 28.65 0.390625

12 28.65 0.390625

13 27.65 0.140625

14 27.05 0.950625

15 28.45 0.180625

16 27.65 0.140625

17 27.35 0.455625

18 28.25 0.050625

19 31.65 13.14063

20 28.55 0.275625

21 28.35 0.105625

22 28.85 0.680625

23 26.35 2.805625

24 27.65 0.140625

 120

25 26.85 1.380625

26 26.75 1.625625

27 27.75 0.075625

28 27.25 0.600625

Σ 784.7 33.0125

(a) 025.28
28

7.784
==y

(b) 105751.1
128

0125.33
=

−
=ys

(c) 222685.1105751.1 22 ==ys

(d) %95.3%100
025.28

105751.1
c.v. =×=

(e) The data can be sorted and grouped.

Lower Upper Frequency

26 26.5 1

26.5 27 4

27 27.5 3

27.5 28 7

28 28.5 4

28.5 29 6

29 29.5 1

29.5 30 1

30 30.5 0

30.5 31 0

31 31.5 0

31.5 32 1

The histogram can then be constructed as

0

1

2

3

4

5

6

7

8

26 27 28 29 30 31 32

Bin

F
re

q
u

e
n

c
y

 121

(f) 68% of the readings should fall between ysy − and ysy + . That is, between 28.025 –

1.10575096 = 26.919249 and 28.025 + 1.10575096 = 29.130751. Twenty values fall

between these bounds which is equal to 20/28 = 71.4% of the values which is not that

far from 68%.

12.4 The sum of the squares of the residuals for this case can be written as

()∑
=

−=
n

i

iir xayS
1

2

1

The partial derivative of this function with respect to the single parameter a1 can be

determined as

[]∑ −−=
∂
∂

iii
r xxay

a

S
)(2 1

1

Setting the derivative equal to zero and evaluating the summations gives

∑∑ − ii xay 1

which can be solved for

∑
∑=

i

i

x

y
a1

So the slope that minimizes the sum of the squares of the residuals for a straight line with a

zero intercept is merely the ratio of the sum of the dependent variables (y) over the sum of

the independent variables (x).

12.5

i xi yi xi
2
 xiyi

1 0 9.8100 0 0

2 20000 9.7487 4.0E+08 194974

3 40000 9.6879 1.6E+09 387516

4 60000 9.6278 3.6E+09 577668

5 80000 9.5682 6.4E+09 765456

Σ 200000 48.4426 1.2E+10 1925614

6

2101 100225.3
000,200)102.1(5

)4426.48(000,200)614,925,1(5 −×−=
−×

−
=a

80942.9
5

000,200
100225.3

5

4426.48 6
0 =×−= −a

Therefore, the line of best fit is (using the nomenclature of the problem)

 122

yg 6100225.380942.9 −×−=

The value at 55,000 m can therefore be computed as

6431825.9)000,55(100225.380942.9 6 =×−= −g

12.6 Regression gives

Tp 3164.3047.8100 += (r2 = 0.999)

6000

8000

10000

12000

-50 0 50 100 150

n

V

T

p
R ⎟

⎠
⎞

⎜
⎝
⎛=

3164.30=
T

p

g/mole 28

kg 1
=n

487.8
28/10

10
3164.30

3
=⎟

⎠
⎞

⎜
⎝
⎛=R

This is close to the standard value of 8.314 J/gmole.

12.7 Linear regression gives

y = 0.0454x + 0.1077

R
2
 = 0.999

0

0.2

0.4

0.6

0 2 4 6 8 10

 123

Forcing a zero intercept yields

y = 0.061x

R
2
 = 0.8387

0

0.2

0.4

0.6

0 2 4 6 8 10

One alternative that would force a zero intercept is a power fit

y = 0.1827x
0.4069

R
2
 = 0.9024

0

0.2

0.4

0.6

0 2 4 6 8 10

However, this seems to represent a poor compromise since it misses the linear trend in the

data. An alternative approach would to assume that the physically-unrealistic non-zero

intercept is an artifact of the measurement method. Therefore, if the linear slope is valid,

we might try y = 0.0454x.

12.8 The function can be linearized by dividing it by x and taking the natural logarithm to yield

xxy 44ln)/ln(βα +=

Therefore, if the model holds, a plot of ln(y/x) versus x should yield a straight line with an

intercept of lnα4 and an intercept of β4.

x y ln(y/x)

0.1 0.75 2.014903

0.2 1.25 1.832581

0.4 1.45 1.287854

0.6 1.25 0.733969

0.9 0.85 -0.05716

1.3 0.55 -0.8602

1.5 0.35 -1.45529

1.7 0.28 -1.80359

1.8 0.18 -2.30259

 124

y = -2.4733x + 2.2682

R
2
 = 0.9974

-3

-2

-1

0

1

2

3

0 0.5 1 1.5 2

Therefore, β4 = −2.4733 and α4 = e2.2682 = 9.661786, and the fit is

xxey 4733.2661786.9 −=

This equation can be plotted together with the data:

0

1

2

0 0.5 1 1.5 2

12.9 The data can be transformed, plotted and fit with a straight line

v, m/s F, N ln v ln F

10 25 2.302585 3.218876

20 70 2.995732 4.248495

30 380 3.401197 5.940171

40 550 3.688879 6.309918

50 610 3.912023 6.413459

60 1220 4.094345 7.106606

70 830 4.248495 6.721426

80 1450 4.382027 7.279319

y = 1.9842x - 1.2941

R
2
 = 0.9481

2

3

4

5

6

7

8

2 2.5 3 3.5 4 4.5

 125

The least-squares fit is

2941.1ln9842.1ln −= xy

The exponent is 1.9842 and the leading coefficient is e−1.2941 = 0.274137. Therefore, the

result is the same as when we used common or base-10 logarithms:

9842.1274137.0 xy =

12.10 (a) The data can be plotted

0

400

800

1200

1600

2000

0 10 20 30

The plot indicates that the data is somewhat curvilinear. An exponential model (i.e., a semi-

log plot) is the best choice to linearize the data. This conclusion is based on

• A power model does not result in a linear plot

• Bacterial decay is known to follow an exponential model

• The exponential model by definition will not produce negative values.

The exponential fit can be determined as

t (hrs) c (CFU/100 mL) ln c

4 1590 7.371489

8 1320 7.185387

12 1000 6.907755

16 900 6.802395

20 650 6.476972

24 560 6.327937

 126

y = -0.0532x + 7.5902

R
2
 = 0.9887

6

6.4

6.8

7.2

7.6

0 10 20 30

Therefore, the coefficient of the exponent (β1) is −0.0532 and the lead coefficient (α1) is

e7.5902 = 1978.63, and the fit is

tec 0532.063.1978 −=

Consequently the concentration at t = 0 is 1978.63 CFU/100 ml. Here is a plot of the fit

along with the original data:

0

400

800

1200

1600

2000

2400

0 10 20 30

(b) The time at which the concentration will reach 200 CFU/100 mL can be computed as

te 0532.063.1978200 −=

t0532.0
63.1978

200
ln −=⎟

⎠
⎞

⎜
⎝
⎛

d 08.43
0532.0

63.1978

200
ln

=
−

⎟
⎠
⎞

⎜
⎝
⎛

=t

12.11 (a) The exponential fit can be determined with the base-10 logarithm as

t (hrs) c (CFU/100 mL) log c

4 1590 3.201397

8 1320 3.120574

12 1000 3

16 900 2.954243

 127

20 650 2.812913

24 560 2.748188

y = -0.0231x + 3.2964

R
2
 = 0.9887

2.7

2.8

2.9

3

3.1

3.2

3.3

0 10 20 30

Therefore, the coefficient of the exponent (β5) is −0.0231 and the lead coefficient (α5) is

103.2964 = 1978.63, and the fit is

tc 0231.0)10(63.1978 −=

Consequently the concentration at t = 0 is 1978.63 CFU/100 ml.

(b) The time at which the concentration will reach 200 CFU/100 mL can be computed as

t0231.0)10(63.1978200 −=

t0231.0
63.1978

200
log10 −=⎟

⎠
⎞

⎜
⎝
⎛

d 08.43
0231.0

63.1978

200
log10

=
−

⎟
⎠
⎞

⎜
⎝
⎛

=t

Thus, the results are identical to those obtained with the base-e model.

The relationship between β1 and β5 can be developed as in

tt

e 51 10
αα −− =

Take the natural log of this equation to yield

10ln51 tt αα −=−

or

51 302585.2 αα =

 128

12.12 The power fit can be determined as

W (kg) A (m
2
) log W log A

70 2.1 1.845098 0.322219

75 2.12 1.875061 0.326336

77 2.15 1.886491 0.332438

80 2.2 1.90309 0.342423

82 2.22 1.913814 0.346353

84 2.23 1.924279 0.348305

87 2.26 1.939519 0.354108

90 2.3 1.954243 0.361728

logA = 0.3799logW - 0.3821

R
2
 = 0.9711

0.31

0.32

0.33

0.34

0.35

0.36

0.37

1.8 1.84 1.88 1.92 1.96

Therefore, the power is b = 0.3799 and the lead coefficient is a = 10−0.3821 = 0.4149, and the

fit is

3799.04149.0 WA =

Here is a plot of the fit along with the original data:

2.05

2.1

2.15

2.2

2.25

2.3

2.35

70 75 80 85 90

The value of the surface area for a 95-kg person can be estimated as

23799.0 m 34.2)95(4149.0 ==A

 129

12.13 The power fit can be determined as

Mass
(kg)

Metabolism
(kCal/day) log Mass log Met

300 5600 2.477121 3.748188

70 1700 1.845098 3.230449

60 1100 1.778151 3.041393

2 100 0.30103 2

0.3 30 -0.52288 1.477121

logMet = 0.7497logMass + 1.818

R
2
 = 0.9935

0

1

2

3

4

-1 0 1 2 3

Therefore, the power is b = 0.7497 and the lead coefficient is a = 101.818 = 65.768, and the

fit is

7497.0Mass768.65Metabolism =

Here is a plot of the fit along with the original data:

0

2000

4000

6000

8000

0 100 200 300 400

12.14 Linear regression of the log transformed data yields

σε log6363.2log41.5log +−= B& (r2 = 0.9997)

 130

-3.6

-3.2

-2.8

-2.4

0.7 0.8 0.9 1 1.1 1.2

Therefore,

-6-5.41 103.8897510 ×==B

6363.2=m

and the untransformed model is

6363.2-6103.88975 σε ×=&

A plot of the data and the model can be developed as

0

0.001

0.002

0.003

0.004

0.005

0 5 10 15

12.15 Linear regression of the data yields

γτ &0.6852.779 += (r2 = 0.977121)

0

2

4

6

8

0 2 4 6

Therefore, µ = 0.685 and τy = 2.779 N/m2.

 131

12.16 The data can be transformed

strain stress log(strain) log(stress)

50 5.99 1.69897 0.777427

70 7.45 1.845098 0.872156

90 8.56 1.954243 0.932474

110 9.09 2.041393 0.958564

130 10.25 2.113943 1.010724

Linear regression of the transformed data yields

γτ &log54298.013808.0log +−= (r2 = 0.989118)

0.6

0.7

0.8

0.9

1

1.1

1.6 1.8 2 2.2

Therefore, µ = 10–0.54298 = 0.72765 and n = 0.54298. The power model is therefore,

54298.072765.0 γτ &=

A plot of the power model along with the data can be created as

0

4

8

12

0 50 100 150

 132

CHAPTER 13

13.1 The data can be tabulated and the sums computed as

i x y x
2
 x

3
 x

4
 xy x

2
y

1 10 25 100 1000 10000 250 2500

2 20 70 400 8000 160000 1400 28000

3 30 380 900 27000 810000 11400 342000

4 40 550 1600 64000 2560000 22000 880000

5 50 610 2500 125000 6250000 30500 1525000

6 60 1220 3600 216000 12960000 73200 4392000

7 70 830 4900 343000 24010000 58100 4067000

8 80 1450 6400 512000 40960000 116000 9280000

Σ 360 5135 20400 1296000 87720000 312850 20516500

Normal equations:

⎪⎭

⎪
⎬
⎫

⎪⎩

⎪
⎨
⎧

=
⎪⎭

⎪
⎬
⎫

⎪⎩

⎪
⎨
⎧

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡

20516500
312850

5135

87720000129600020400
129600020400360

204003608

2

1

0

a

a

a

which can be solved for the coefficients yielding the following best-fit polynomial

2037202.012202.164821.178 vvF ++−=

Here is the resulting fit:

-500

0

500

1000

1500

2000

0 20 40 60 80 100

The predicted values can be used to determined the sum of the squares. Note that the mean

of the y values is 641.875.

i x y ypred
2)(yyi − (y − ypred)

2

1 10 25 -13.5417 380535 1485

2 20 70 158.8393 327041 7892

3 30 380 338.6607 68579 1709

 133

4 40 550 525.9226 8441 580

5 50 610 720.625 1016 12238

6 60 1220 922.7679 334229 88347

7 70 830 1132.351 35391 91416

8 80 1450 1349.375 653066 10125

Σ 1808297 213793

The coefficient of determination can be computed as

88177.0
1808297

21379318082972 =
−

=r

The model fits the trend of the data nicely, but it has the deficiency that it yields physically

unrealistic negative forces at low velocities.

13.2 The sum of the squares of the residuals for this case can be written as

()∑
=

−−=
n

i

iiir xaxayS
1

22
21

The partial derivatives of this function with respect to the unknown parameters can be

determined as

[]∑ −−−=
∂
∂

iiii
r xxaxay

a

S
)(2 2

21

1

[]∑ −−−=
∂
∂ 22

21

2

)(2 iiii
r xxaxay

a

S

Setting the derivative equal to zero and evaluating the summations gives

() () iiii yxaxax ∑∑∑ =+ 2
3

1
2

() () iiii yxaxax ∑∑∑ =+ 2
2

4
1

3

which can be solved for

()2342

324

1

∑∑∑
∑∑∑∑

−

−
=

iii

iiiiii

xxx

xyxxyx
a

()2342

322

2

∑∑∑
∑∑∑ ∑

−

−
=

iii

iiiiii

xxx

xyxyxx
a

The model can be tested for the data from Table 12.1.

 134

x y x
2
 x

3
 x

4
 xy x

2
y

10 25 100 1000 10000 250 2500

20 70 400 8000 160000 1400 28000

30 380 900 27000 810000 11400 342000

40 550 1600 64000 2560000 22000 880000

50 610 2500 125000 6250000 30500 1525000

60 1220 3600 216000 12960000 73200 4392000

70 830 4900 343000 24010000 58100 4067000

80 1450 6400 512000 40960000 116000 9280000

Σ 20400 1296000 87720000 312850 20516500

771024.7
)1296000()87720000(20400

)1296000(20516500)87720000(312850
21 =

−
−

=a

119075.0
)1296000()87720000(20400

)1296000(312850)20516500(20400
2 =

−
−

=a

Therefore, the best-fit model is

2119075.0771024.7 xxy +=

The fit, along with the original data can be plotted as

0

500

1000

1500

2000

2500

0 20 40 60 80 100

13.3 The data can be tabulated and the sums computed as

i x y x
2
 x

3
 x

4
 x

5
 x

6
 xy x

2
y x

3
y

1 3 1.6 9 27 81 243 729 4.8 14.4 43.2

2 4 3.6 16 64 256 1024 4096 14.4 57.6 230.4

3 5 4.4 25 125 625 3125 15625 22 110 550

4 7 3.4 49 343 2401 16807 117649 23.8 166.6 1166.2

5 8 2.2 64 512 4096 32768 262144 17.6 140.8 1126.4

6 9 2.8 81 729 6561 59049 531441 25.2 226.8 2041.2

7 11 3.8 121 1331 14641 161051 1771561 41.8 459.8 5057.8

8 12 4.6 144 1728 20736 248832 2985984 55.2 662.4 7948.8

Σ 59 26.4 509 4859 49397 522899 5689229 204.8 1838.4 18164

Normal equations:

 135

⎪
⎭

⎪
⎬

⎫

⎪
⎩

⎪
⎨

⎧
=

⎪
⎭

⎪
⎬

⎫

⎪
⎩

⎪
⎨

⎧

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

18164
4.1838
8.204

4.26

5689229522899493974859
522899493974859509
49397485950959
4859509598

3

2

1

0

a

a

a

a

which can be solved for the coefficients yielding the following best-fit polynomial

32 046676.004121.1143817.74887.11 xxxy +−+−=

Here is the resulting fit:

-2

0

2

4

6

8

0 5 10 15

The predicted values can be used to determined the sum of the squares. Note that the mean

of the y values is 3.3.

i x y ypred
2)(yyi − (y − ypred)

2

1 3 1.6 1.83213 2.8900 0.0539

2 4 3.6 3.41452 0.0900 0.0344

3 5 4.4 4.03471 1.2100 0.1334

4 7 3.4 3.50875 0.0100 0.0118

5 8 2.2 2.92271 1.2100 0.5223

6 9 2.8 2.4947 0.2500 0.0932

7 11 3.8 3.23302 0.2500 0.3215

8 12 4.6 4.95946 1.6900 0.1292

Σ 7.6000 1.2997

The coefficient of determination can be computed as

829.0
6.7

2997.16.72 =
−

=r

13.4
function p = polyreg(x,y,m)

% polyreg(x,y,m):

% Polynomial regression.

 136

% input:

% x = independent variable

% y = dependent variable

% m = order of polynomial

% output:

% p = vector of coefficients

n = length(x);

if length(y)~=n, error('x and y must be same length'); end

for i = 1:m+1

 for j = 1:i

 k = i+j-2;

 s = 0;

 for l = 1:n

 s = s + x(l)^k;

 end

 A(i,j) = s;

 A(j,i) = s;

 end

 s = 0;

 for l = 1:n

 s = s + y(l)*x(l)^(i-1);

 end

 b(i) = s;

end

p = A\b';

Test solving Prob. 13.3:

>> x = [3 4 5 7 8 9 11 12];

>> y = [1.6 3.6 4.4 3.4 2.2 2.8 3.8 4.6];

>> polyreg(x,y,3)

ans =

 -11.4887

 7.1438

 -1.0412

 0.0467

13.5 Because the data is curved, a linear regression will undoubtedly have too much error.

Therefore, as a first try, fit a parabola,

>> format long

>> T = [0 5 10 15 20 25 30];

>> c = [14.6 12.8 11.3 10.1 9.09 8.26 7.56];

>> p = polyfit(T,c,2)

p =

 0.00439523809524 -0.36335714285714 14.55190476190477

Thus, the best-fit parabola would be

20043952381.036335714.055190476.14 TTc +−=

 137

0

4

8

12

16

0 5 10 15 20 25 30

We can use this equation to generate predictions corresponding to the data. When these

values are rounded to the same number of significant digits the results are

T c-data c-pred rounded

0 14.6 14.55190 14.6

5 12.8 12.84500 12.8

10 11.3 11.35786 11.4

15 10.1 10.09048 10.1

20 9.09 9.04286 9.04

25 8.26 8.21500 8.22

30 7.56 7.60690 7.61

Thus, although the plot looks good, discrepancies occur in the third significant digit.

We can, therefore, fit a third-order polynomial

>> p = polyfit(T,c,3)

p =

 -0.00006444444444 0.00729523809524 -0.39557936507936 14.60023809523810

Thus, the best-fit cubic would be

32 40.0000644480.0072952350.395579369514.6002380 TTTc −+−=

We can use this equation to generate predictions corresponding to the data. When these

values are rounded to the same number of significant digits the results are

T c-data c-pred rounded

0 14.6 14.60020 14.6

5 12.8 12.79663 12.8

10 11.3 11.30949 11.3

15 10.1 10.09044 10.1

20 9.09 9.09116 9.09

25 8.26 8.26331 8.26

30 7.56 7.55855 7.56

Thus, the predictions and data agree to three significant digits.

 138

13.6 The multiple linear regression model to evaluate is

caTaao 210 ++=

The [Z] and y matrices can be set up using MATLAB commands in a fashion similar to

Example 13.4,

>> format long

>> t = [0 5 10 15 20 25 30];

>> T = [t t t]';

>> c = [zeros(size(x)) 10*ones(size(x)) 20*ones(size(x))]';

>> Z = [ones(size(T)) T c];

>> y = [14.6 12.8 11.3 10.1 9.09 8.26 7.56 12.9 11.3 10.1 9.03 8.17

7.46 6.85 11.4 10.3 8.96 8.08 7.35 6.73 6.2]';

The coefficients can be evaluated as

>> a = Z\y

a =

 13.52214285714286

 -0.20123809523810

 -0.10492857142857

Thus, the best-fit multiple regression model is

cTo 1428570.104928575238100.20123809571428613.5221428 −−=

We can evaluate the prediction at T = 12 and c = 15 and evaluate the percent relative error

as

>> cp = a(1)+a(2)*12+a(3)*15

cp =

 9.53335714285714

>> ea = abs((9.09-cp)/9.09)*100

ea =

 4.87741631305987

Thus, the error is considerable. This can be seen even better by generating predictions for

all the data and then generating a plot of the predictions versus the data. A one-to-one line

is included to show how the predictions diverge from a perfect fit.

 139

4

8

12

16

4 8 12 16

The cause for the discrepancy is because the dependence of oxygen concentration on the

unknowns is significantly nonlinear. It should be noted that this is particularly the case for

the dependency on temperature.

13.7 The multiple linear regression model to evaluate is

caTaTaTaay 4
3

3
2

210 ++++=

The [Z] matrix can be set up as in

>> T = 0:5:30;

>> T = [T T T]';

>> c = [0 0 0 0 0 0 0 10 10 10 10 10 10 10 20 20 20 20 20 20 20]';

>> o = [1 1]';

>> y = [14.6 12.8 11.3 10.1 9.09 8.26 7.56 12.9 11.3 10.1 9.03 8.17

7.46 6.85 11.4 10.3 8.96 8.08 7.35 6.73 6.2]';

>> Z = [o T T.^2 T.^3 c];

Then, the coefficients can be generated by solving Eq.(13.10)

>> format long

>> a = (Z'*Z)\[Z'*y]

a =

 14.02714285714287

 -0.33642328042328

 0.00574444444444

 -0.00004370370370

 -0.10492857142857

Thus, the least-squares fit is

cTTTy 10492857.0000043704.000574444.0336423.0027143.14 32 −−+−=

The model can then be used to predict values of oxygen at the same values as the data.

These predictions can be plotted against the data to depict the goodness of fit.

 140

>> yp = Z*a

>> plot(y,yp,'o')

Finally, the prediction can be made at T = 12 and c = 15,

>> a(1)+a(2)*12+a(3)*12^2+a(4)*12^3+a(5)*15

ans =

 9.16781492063485

which compares favorably with the true value of 9.09 mg/L.

13.8 The multiple linear regression model to evaluate is

22110 xaxaay ++=

The [Z] matrix can be set up as in

>> x1 = [0 1 1 2 2 3 3 4 4]';

>> x2 = [0 1 2 1 2 1 2 1 2]';

>> y = [15.1 17.9 12.7 25.6 20.5 35.1 29.7 45.4 40.2]';

>> o = [1 1 1 1 1 1 1 1 1]';

>> Z = [o x1 x2 y];

Then, the coefficients can be generated by solving Eq.(13.10)

>> a = (Z'*Z)\[Z'*y]

a =

 14.4609

 9.0252

 -5.7043

Thus, the least-squares fit is

21 7043.50252.94609.14 xxy −+=

 141

The model can then be used to predict values of the unknown at the same values as the

data. These predictions can be used to determine the correlation coefficient and the standard

error of the estimate.

>> yp = Z*a

>> SSR = sum((yp - y).^2)

SSR =

 4.7397

>> SST = sum((y - mean(y)).^2)

SST =

 1.0587e+003

>> r2 = (SST - SSR)/SST

r2 =

 0.9955

>> r = sqrt(r2)

r =

 0.9978

>> syx = sqrt(SSR/(length(y)-3))

syx =

 0.8888

13.9 The multiple linear regression model to evaluate is

)log()log(loglog 210 SDQ ααα ++=

The [Z] matrix can be set up as in

>> D = [.3 .6 .9 .3 .6 .9 .3 .6 .9]';

>> S = [.001 .001 .001 .01 .01 .01 .05 .05 .05]';

>> Q = [.04 .24 .69 .13 .82 2.38 .31 1.95 5.66]';

>> o = [1 1 1 1 1 1 1 1 1]';

>> Z = [o log10(D) log10(S)]

Then, the coefficients can be generated by solving Eq.(13.10)

>> a = (Z'*Z)\[Z'*log10(Q)]

a =

 1.5609

 2.6279

 0.5320

Thus, the least-squares fit is

)log(5320.0)log(6279.25609.1log SDQ ++=

Taking the inverse logarithm gives

 142

5320.06279.25320.06279.25609.1 3813.3610 SDSDQ ==

13.10 The linear regression model to evaluate is

ttt CeBeAetp 05.03.05.1)(−−− ++=

The unknowns can be entered and the [Z] matrix can be set up as in

>> p = [7 5.2 3.8 3.2 2.5 2.1 1.8 1.5 1.2 1.1]';

>> t = [0.5 1 2 3 4 5 6 7 8 9]';

>> Z = [exp(-1.5*t) exp(-0.3*t) exp(-0.05*t)];

Then, the coefficients can be generated by solving Eq.(13.10)

>> Z = [exp(-1.5*t) exp(-0.3*t) exp(-0.05*t)];

>> a = (Z'*Z)\[Z'*p]

a =

 3.7778

 4.3872

 1.3775

Thus, the least-squares fit is

ttt eeetp 05.03.05.1 3775.13872.47778.3)(−−− ++=

The fit and the data can be plotted as

>> pp = Z*a

>> plot(t,p,'o',t,pp)

13.11 First, an M-file function must be created to compute the sum of the squares,

function f = fSSR(a,Im,Pm)

Pp = a(1)*Im/a(2).*exp(-Im/a(2)+1);

f = sum((Pm-Pp).^2);

 143

The data can then be entered as

>> I = [50 80 130 200 250 350 450 550 700];

>> P = [99 177 202 248 229 219 173 142 72];

The minimization of the function is then implemented by

>> a = fminsearch(@fSSR, [200, 200], [], I, P)

a =

 238.7124 221.8239

The best-fit model is therefore

1
8239.221

8239.221
7124.238

+−
=

I

e
I

P

The fit along with the data can be displayed graphically.

>> Pp = a(1)*I/a(2).*exp(-I/a(2)+1);

>> plot(I,P,'o',I,Pp)

13.12 First, an M-file function must be created to compute the sum of the squares,

function f = fSSR(a,xm,ym)

yp = a(1)*xm.*exp(a(2)*xm);

f = sum((ym-yp).^2);

The data can then be entered as

>> x = [.1 .2 .4 .6 .9 1.3 1.5 1.7 1.9];

>> y = [0.75 1.25 1.45 1.25 0.85 0.55 0.35 0.28 0.18];

 144

The minimization of the function is then implemented by

>> a = fminsearch(@fSSR, [1, 1], [], x, y)

a =

 9.8545 -2.5217

The best-fit model is therefore

xxey 5217.28545.9 −=

The fit along with the data can be displayed graphically.

>> yp = a(1)*x.*exp(a(2)*x);

>> plot(x,y,'o',x,yp)

13.13 (a) The model can be linearized by inverting it,

mm kSk

K

v

1

][

11
3

0

+=

If this model is valid, a plot of 1/v0 versus 1/[S]3 should yield a straight line with a slope of

K/km and an intercept of 1/km. The slope and intercept can be implemented in MATLAB

using the M-file function linregr (Fig. 12.12),

>> S = [.01 .05 .1 .5 1 5 10 50 100];

>> v0 = [6.078e-11 7.595e-9 6.063e-8 5.788e-6 1.737e-5 2.423e-5

2.43e-5 2.431e-5 2.431e-5];

>> a = linregr(1./S.^3,1./v0)

a =

 1.0e+004 *

 1.64527391375701 4.13997346408367

 145

These results can then be used to compute km and K,

>> km=1/a(2)

km =

 2.415474419523452e-005

>> K=km*a(1)

K =

 0.39741170517893

Thus, the best-fit model is

3

35

0
][39741.0

][10415474.2

S

S
v

+
×

=
−

The fit along with the data can be displayed graphically. We will use a log-log plot because

of the wide variation of the magnitudes of the values being displayed,

>> v0p = km*S.^3./(K+S.^3);

>> loglog(S,v0,'o',S,v0p)

(b) An M-file function must be created to compute the sum of the squares,

function f = fSSR(a,Sm,v0m)

v0p = a(1)*Sm.^3./(a(2)+Sm.^3);

f = sum((v0m-v0p).^2);

The data can then be entered as

>> S = [.01 .05 .1 .5 1 5 10 50 100];

>> v0 = [6.078e-11 7.595e-9 6.063e-8 5.788e-6 1.737e-5 2.423e-5

2.43e-5 2.431e-5 2.431e-5];

 146

The minimization of the function is then implemented by

>> format long

>> a = fminsearch(@fSSR, [2e-5, 1], [], S, v0)

a =

 0.00002430998303 0.39976314533880

The best-fit model is therefore

3

35

0
][399763.0

][10431.2

S

S
v

+
×

=
−

The fit along with the data can be displayed graphically. We will use a log-log plot because

of the wide variation of the magnitudes of the values being displayed,

>> v0p = a(1)*S.^3./(a(2)+S.^3);

>> loglog(S,v0,'o',S,v0p)

 147

CHAPTER 14

14.1 (a) Newton’s polynomial. Ordering of points:

x1 = 3 f(x1) = 6.5

x2 = 4 f(x2) = 2

x3 = 2.5 f(x3) = 7

x4 = 5 f(x4) = 0

Note that based purely on the distance from the unknown, the fourth point would be (2, 5).

However, because it provides better balance and is located only a little bit farther from the

unknown, the point at (5, 0) is chosen.

First order:

7.4)34.3)(5.4(5.6)34.3(
34

5.62
5.6)4.3(1 =−−+=−

−
−

+=f

Second order:

5.259887)44.3)(34.3)(333333.2(7.4

)44.3)(34.3(
35.2

)5.4(333333.3
7.4

)44.3)(34.3(
35.2

)5.4(
45.2

27

7.4)4.3(2

=−−−+=

−−
−

−−−
+=

−−
−

−−
−

−

+=f

Third order:

4.95152)5.24.3)(44.3)(34.3(
35

)333333.2(5333333.0
5.259887

)5.24.3)(44.3)(34.3(
35

)333333.2(
45

)333333.3(8.2

5.259887

)5.24.3)(44.3)(34.3(
35

)333333.2(
45

)333333.3(
5.25

70

5.259887)4.3(3

=−−−
−

−−
+=

−−−
−

−−
−

−−−

+=

−−−
−

−−
−

−−
−
−

+=f

(b) Lagrange polynomial.

First order:

7.42
34

34.3
5.6

43

44.3
)4.3(1 =

−
−

+
−
−

=f

 148

Second order:

259887.57
)45.2)(35.2(

)44.3)(34.3(
2

)5.24)(34(

)5.24.3)(34.3(
5.6

)5.23)(43(

)5.24.3)(44.3(
)4.3(2 =

−−
−−

+
−−

−−
+

−−
−−

=f

Third order:

95152.40
)5.25)(45)(35(

)5.24.3)(44.3)(34.3(
7

)55.2)(45.2)(35.2(

)54.3)(44.3)(34.3(

2
)54)(5.24)(34(

)54.3)(5.24.3)(34.3(
5.6

)53)(5.23)(43(

)54.3)(5.24.3)(44.3(
)4.3(3

=
−−−

−−−
+

−−−
−−−

+

−−−
−−−

+
−−−

−−−
=f

14.2 The points can be ordered so that they are close to and centered around the unknown. A

divided-difference table can then be developed as

x f(x) First Second Third Fourth

3 5.25 7.25 2 0.25 0

5 19.75 5.25 2.75 0.25

2 4 8 1.75

6 36 6.25

1 4.75

Note that the fact that the fourth divided difference is zero means that the data was

generated with a third-order polynomial.

First order:

5.12)34(25.725.5)4(1 =−+=f

Second order:

5.102)54)(34(5.12)4(2 =−−+=f

Third order:

10 25.0)24)(54)(34(5.10)4(3 =−−−+=f

Fourth order:

10 0)64)(24)(54)(34(5.10)4(3 =−−−−+=f

14.3 Lagrange polynomial.

First order:

5.1275.19
35

34
25.5

53

54
)4(1 =

−
−

+
−
−

=f

 149

Second order:

5.104
)52)(32(

)54)(34(
75.19

)25)(35(

)24)(34(
25.5

)23)(53(

)24)(54(
)4(2 =

−−
−−

+
−−
−−

+
−−
−−

=f

Third order:

1036
)26)(56)(36(

)24)(54)(34(
4

)62)(52)(32(

)64)(54)(34(

75.19
)65)(25)(35(

)64)(24)(34(
25.5

)63)(23)(53(

)64)(24)(54(
)4(3

=
−−−
−−−

+
−−−
−−−

+

−−−
−−−

+
−−−
−−−

=f

14.4 (a) The points can be ordered so that they are close to and centered around the unknown. A

divided-difference table can then be developed as

T,
o
C c = 10 g/L first second third

10 10.1 -0.214 0.0026 0.000107

15 9.03 -0.227 0.003667

5 11.3 -0.20867

20 8.17

Second order:

6564.9)1512)(1012(0026.0)1012(214.01.10)4(2 =−−+−−=f

Third order:

65192.9)512)(1512)(1012(000107.06564.9)4(3 =−−−+=f

(b) First, linear interpolation can be used to generate values for T = 10 and 15 at c = 15,

53.9)1015(
1020

1.1096.8
1.10)15,10(1 =−

−
−

+=== cTf

555.8)1015(
1020

03.908.8
03.9)15,15(1 =−

−
−

+=== cTf

These values can then be used to determine the result at T = 12,

14.9)1012(
1015

53.9555.8
53.9)15,12(1 =−

−
−

+=== cTf

(c) First, quadratic interpolation can be used to generate values for T = 5, 10 and 15 at c =

15,

7375.10)1015)(015(0025.0)015(15.08.12)15,5(2 =−−+−−=== cTf

 150

5225.9)1015)(015(0003.0)015(12.03.11)15,10(2 =−−+−−=== cTf

54.8)1015)(015(0006.0)015(107.01.10)15,15(2 =−−+−−=== cTf

These values can then be used to determine the result at T = 12,

1016.9)1012)(512(00465.0)512(243.07375.10)15,12(2 =−−+−−=== cTf

14.5 MATLAB can be used to generate a cubic polynomial through the first 4 points in the table,

>> x = [1 2 3 4];

>> fx = [3.6 1.8 1.2 0.9];

>> p = polyfit(x,fx,3)

p =

 -0.1500 1.5000 -5.2500 7.5000

Therefore, the roots problem to be solved is

5.725.55.115.06.1 23 +−+−= xxx

or

09.525.55.115.0)(23 =+−+−= xxxxf

Bisection can be employed the root of this polynomial. Using initial guesses of xl = 2 and xu

= 3, a value of 2.2156 is obtained with εa = 0.00069% after 16 iterations.

14.6 (a) Analytical:

2

2

1
93.0

x

x

+
=

2293.093.0 xx =+

93.007.0 2 =x

3.644957
07.0

93.0
==x

(b) A quadratic interpolating polynomial can be fit to the last three points using the

polyfit function,

>> format long

>> x = [3 4 5];

>> y = x.^2./(1+x.^2);

>> p = polyfit(x,y,2)

p =

 -0.01040723981900 0.11402714932127 0.65158371040724

 151

Thus, the best fit quadratic is

6515837.011402715.001040724.0)(2
2 ++−= xxxf

We must therefore find the root of

6515837.011402715.001040724.093.0 2 ++−= xx

or

2784163.011402715.001040724.0)(2 −+−= xxxf

The quadratic formula yields

6729442.3
2835775.7

)11402715.0(2

)2784163.0)(01040724.0(4)11402715.0(11402715.0 2

=
−−−±−

=x

Thus, the estimate is 3.67294421.

(c) A cubic interpolating polynomial can be fit to the last four points using the polyfit

function,

>> format long

>> x = [2 3 4 5];

>> y=x.^2./(1+x.^2)

>> p = polyfit(x,y,3)

p =
 0.00633484162896 -0.08642533936652 0.41176470588235 0.27149321266968

Thus, the best fit cubic is

0.27149320.41176470.0864253420.00633484)(23
3 ++−= xxxxf

We must therefore find the root of

0.27149320.41176470.0864253420.0063348493.0 23 ++−= xxx

or

0.65850680.41176470.0864253420.00633484)(23 −+−= xxxxf

Bisection can be employed the root of this polynomial. Using initial guesses of xl = 3 and xu

= 4, a value of 3.61883 is obtained.

14.7 (a) Because they bracket the unknown, the two last points are used for linear interpolation,

 152

6487.6)11144.0118.0(
11144.012547.0

5453.67664.6
5453.6)118.0(1 =−

−
−

+=f

(b) The quadratic interpolation can be implemented easily in MATLAB,

>> v = [0.10377 0.1144 0.12547];

>> s = [6.4147 6.5453 6.7664];

>> p = polyfit(v,s,2)

p =

 354.2358 -64.9976 9.3450

>> polyval(p,0.118)

ans =

 6.6077

Therefore, to the level of significance reported in the table the estimated entropy is 6.6077

(c) The inverse interpolation can be implemented in MATLAB. First, as in part (b), we can

fit a quadratic polynomial to the data to yield,

p =

 354.2358 -64.9976 9.3450

We must therefore find the root of

3450.99976.642358.35445.6 2 +−= xx

or

8950.29976.642358.35445.6 2 +−= xx

In MATLAB, we can generate this polynomial by subtracting 6.45 from the constant

coefficient of the polynomial

>> p(3)=p(3)-6.45

p =

 354.2358 -64.9976 2.8950

Then, we can use the roots function to determine the solution,

>> roots(p)

ans =

 0.1074

 0.0761

Thus, the value of the specific volume corresponding to an entropy of 6.45 is 0.1074.

14.8 This problem is nicely suited for the Newton interpolating polynomial. First, we can order

the data so that the points are closest to and centered around the unknown,

T D

300 1.139

 153

350 0.967

400 0.854

250 1.367

450 0.759

200 1.708

Then we can generate the divided difference table,

T D first second third fourth fifth

300 1.139 -0.003440 1.18000E-05 4.00000E-09 -2.93333E-10 -2.77333E-12

350 0.967 -0.002260 1.16000E-05 -4.00000E-08 -1.60000E-11

400 0.854 -0.003420 7.60000E-06 -3.76000E-08

250 1.367 -0.003040 1.51200E-05

450 0.759 -0.003796

200 1.708

First-order (linear) fit:

0358.1)300330(00344.0139.1)330(1 =−−=f

Thus, the linear estimate is 1.036 to the level of significant digits provided in the original

data.

Second-order (quadratic) fit:

0287.1)350330)(300330(1018.10358.1)330(5
2 =−−×+= −f

The quadratic estimate is 1.029 to the level of significant digits provided in the original

data.

Third-order (cubic) fit:

028888.1)400330)(350330)(300330(1040287.1)330(9
3 =−−−×+= −f

The cubic estimate is also 1.029.

Fourth-order (quartic) fit:

0279.1)250330)(400330)(350330)(300330(93333.20289.1)330(10
4 =−−−−−= −f

The quartic estimate now seems to be diverging slightly by moving to a value of 1.028.

This may be an initial indication that the higher-order terms are beginning to induce slight

oscillations.

Fifth-order (quintic) fit:

02902.1)450330)(250330)(400330)(350330)(300330(77333.20279.1)330(12
2 =−−−−−−= −f

 154

Oscillations are now evidently occurring as the fifth-order estimate now jumps back up to

slightly above a value of 1.029.

On the basis of the foregoing, I would conclude that the cubic equation provides the best

approximation and that a value of 1.029 is a sound estimate to the level of significant digits

provided in the original data.

Inverse interpolation can be now used to determine the temperature corresponding to the

value of density of 1.029. First, MATLAB can be used to fit a cubic polynomial through

the four points that bracket this value. Interestingly, because of the large values of the

temperatures, we get an error message,

>> T = [250 300 350 400];

>> D =[1.3670 1.139 0.967 0.854];

>> p = polyfit(T,D,3)

Warning: Polynomial is badly conditioned. Remove repeated data points

 or try centering and scaling as described in HELP POLYFIT.

(Type "warning off MATLAB:polyfit:RepeatedPointsOrRescale" to suppress

this warning.)

> In polyfit at 78

p =

 0.0000 0.0000 -0.0097 3.2420

Let’s disregard this warn and proceed to adjust the polynomial so that it can be used to

solve the inverse interpolation problem. To do this, we subtract the specified value of the

density from the polynomial’s constant coefficient

>> p(4)=p(4)-1.029

p =

 0.0000 0.0000 -0.0097 2.2130

Then we can use the roots function to determine the temperature that corresponds to this

value

>> roots(p)

ans =

 1.0e+003 *

 -2.8237

 0.5938

 0.3300

Thus, even though the polynomial is badly conditioned one of the roots corresponds to T =

330 as expected.

Now let’s perform the inverse interpolation, but with scaling. To do this, we will merely

subtract the value at the midpoint of the temperature range (325) from all the temperatures.

This acts to both reduce the magnitudes of the temperatures and centers them on zero,

>> format long

>> D = [1.3670 1.139 0.967 0.854];

 155

>> T = [250 300 350 400];

>> T = T - 325;

Then, the cubic fit can be generated with no error message,

>> p = polyfit(T,D,3)

p =
 0.00000000400000 0.00001150000000 -0.00344250000000 1.04581250000000

We can set up the roots problem

>> p(4)=p(4)-1.029

p =
 0.00000000400000 0.00001150000000 -0.00344250000000 0.01681250000000

We can then use the roots function to determine the temperature that corresponds to the

given density

>> r = roots(p)

ans =

 1.0e+003 *

 -3.14874694489127

 0.26878060289231

 0.00496634199799

By adding back the offset of 325, we arrive at the expected result of 330,

>> Tinv = r(3)+325

Tinv =

 3.299663419979927e+002

14.9 A MATLAB session provides a handy way to solve this problem

>> i = [-1 -0.5 -0.25 0.25 0.5 1];

>> V = [-193 -41 -13.5625 13.5625 41 193];

>> p = polyfit(i,V,5)

p =

 0.0000 -0.0000 148.0000 -0.0000 45.0000 0.0000

The interpolating polynomial is therefore

iiV 45148 3 +=

The polyval function can be used to determine the interpolation at i = 0.1,

>> polyval(p,0.10)

ans =

 4.6480

14.10 Third-order case: The MATLAB polyfit function can be used to generate the cubic

polynomial and perform the interpolation,

>> x = [1 1.5 2 2.5];

>> J = [0.765198 0.511828 0.223891 -0.048384];

 156

>> p = polyfit(x,J,3)

p =

 0.0670 -0.3705 0.1014 0.9673

>> Jpred = polyval(p,1.82)

Jpred =

 0.3284

The built-in function besselj can be used to determine the true value which can then be

used to determine the percent relative error

>> Jtrue = besselj(0,1.82)

Jtrue =

 0.3284

>> ea = abs((Jtrue-Jpred)/Jtrue)*100

ea =

 0.0043

Fourth-order case:

>> x = [1 1.5 2 2.5 3];

>> J = [0.765198 0.511828 0.223891 -0.048384 -0.260052];

>> p = polyfit(x,J,4)

p =

 -0.0035 0.0916 -0.4330 0.1692 0.9409

>> Jpred = polyval(p,1.82)

Jpred =

 0.3283

>> Jtrue = besselj(0,1.82);

>> ea = abs((Jtrue-Jpred)/Jtrue)*100

ea =

 0.0302

Fifth-order case:

>> x = [1 1.5 2 2.5 3 0.5];

>> J = [0.765198 0.511828 0.223891 -0.048384 -0.260052 0.938470];

>> p = polyfit(x,J,5)

p =

 -0.0027 0.0231 -0.0115 -0.2400 -0.0045 1.0008

>> Jpred = polyval(p,1.82)

Jpred =

 0.3284

>> Jtrue = besselj(0,1.82);

>> ea = abs((Jtrue-Jpred)/Jtrue)*100

ea =

 5.2461e-004

14.11 In the same fashion as Example 14.6, MATLAB can be used to evaluate each of the cases,

First order:

>> t = [1990 1980];

>> pop = [249.46 227.23];

>> ts = (t - 1955)/35;

>> p = polyfit(ts,pop,1);

 157

>> polyval(p,(2000-1955)/35)

ans =

 271.6900

Second order:

>> t = [t 1970];

>> pop = [pop 205.05];

>> ts = (t - 1955)/35;

>> p = polyfit(ts,pop,2);

>> polyval(p,(2000-1955)/35)

ans =

 271.7400

Third order:

>> t = [t 1960];

>> pop = [pop 180.67];

>> ts = (t - 1955)/35;

>> p = polyfit(ts,pop,3);

>> polyval(p,(2000-1955)/35)

ans =

 273.9900

Fourth order:

>> t = [t 1950];

>> pop = [pop 152.27];

>> ts = (t - 1955)/35;

>> p = polyfit(ts,pop,4);

>> polyval(p,(2000-1955)/35)

ans =

 274.4200

Although the improvement is not great, the addition of each term causes the prediction for

2000 to increase. Thus, using higher-order approximations is moving the prediction closer

to the actual value of 281.42 that occurred in 2000.

 158

CHAPTER 15

15.1 (a) The simultaneous equations for the natural spline can be set up as

⎪
⎪
⎪
⎪

⎭

⎪⎪
⎪
⎪

⎬

⎫

⎪
⎪
⎪
⎪

⎩

⎪⎪
⎪
⎪

⎨

⎧

−
−

=

⎪
⎪
⎪
⎪

⎭

⎪⎪
⎪
⎪

⎬

⎫

⎪
⎪
⎪
⎪

⎩

⎪⎪
⎪
⎪

⎨

⎧

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

0

15

24

6

0

0

1

141

135.0

5.025.0

5.031

1

6

5

4

3

2

1

c

c

c

c

c

c

These equations can be solved for the c’s and then Eqs. (15.21) and (15.18) can be used to

solve for the b’s and the d’s. The coefficients for the intervals can be summarized as

interval a b c d

1 1 3.970954 0 0.029046

2 5 4.058091 0.087137 -0.40664

3 7 3.840249 -0.52282 -6.31535

4 8 -1.41909 -9.99585 5.414938

5 2 -5.16598 6.248963 -2.08299

These can be used to generate the following plot of the natural spline:

0

2

4

6

8

10

0 2 4 6

(b) The not-a-knot spline and its plot can be generated with MATLAB as

>> x = [1 2 2.5 3 4 5];

>> y = [1 5 7 8 2 1];

>> xx = linspace(1,5);

>> yy = spline(x,y,xx);

>> plot(x,y,'o',xx,yy)

 159

Notice how the not-a-knot version exhibits much more curvature, particularly between the

last points.

(c) The piecewise cubic Hermite polynomial and its plot can be generated with MATLAB

as

>> x = [1 2 2.5 3 4 5];

>> y = [1 5 7 8 2 1];

>> xx = linspace(1,5);

>> yy = interp1(x,y,xx,'pchip');

>> plot(x,y,'o',xx,yy)

15.2 The simultaneous equations for the clamped spline with zero end slopes can be set up as

 160

⎪
⎪
⎪
⎪

⎭

⎪
⎪
⎪
⎪

⎬

⎫

⎪
⎪
⎪
⎪

⎩

⎪
⎪
⎪
⎪

⎨

⎧

−
−

=

⎪
⎪
⎪
⎪

⎭

⎪
⎪
⎪
⎪

⎬

⎫

⎪
⎪
⎪
⎪

⎩

⎪
⎪
⎪
⎪

⎨

⎧

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

18

36

144

108

90

0

15.0

5.025.0

5.025.0

5.025.0

5.025.0

5.025.0

5.01

7

6

5

4

3

2

1

c

c

c

c

c

c

c

These equations can be solved for the c’s and then Eqs. (15.21) and (15.18) can be used to

solve for the b’s and the d’s. The coefficients for the intervals can be summarized as

interval a b c d

1 70 0 15.87692 -31.7538

2 70 -7.93846 -31.7538 -24.7385

3 55 -58.2462 -68.8615 106.7077

4 22 -47.0769 91.2 -66.0923

5 13 -5.44615 -7.93846 13.66154

6 10 -3.13846 12.55385 -12.5538

The fit can be displayed in graphical form. Note that we are plotting the points as depth

versus temperature so that the graph depicts how the temperature changes down through the

tank.

0

1

2

3

0 50 100

Inspection of the plot indicates that the inflection point occurs in the 3rd interval. The cubic

equation for this interval is

 32
3)1(7077.106)1(8615.68)1(2462.5855)(−+−−−−= dddxT

where T = temperature and d = depth. This equation can be differentiated twice to yield the

second derivative

)1(2462.640729.137
)(

2

3
2

−+−= d
dx

xTd

 161

This can be set equal to zero and solved for the depth of the thermocline as d = 1.21511 m.

15.3 (a) The not-a-knot fit can be set up in MATLAB as

>> x = linspace(0,1,11);

>> y = 1./((x-0.3).^2+0.01)+1./((x-0.9).^2+0.04)-6;

>> xx = linspace(0,1);

>> yy = spline(x,y,xx);

>> yh = 1./((xx-0.3).^2+0.01)+1./((xx-0.9).^2+0.04)-6;

>> plot(x,y,'o',xx,yy,xx,yh,'--')

(b) The piecewise cubic Hermite polynomial fit can be set up in MATLAB as

>> x = linspace(0,1,11);

>> y = 1./((x-0.3).^2+0.01)+1./((x-0.9).^2+0.04)-6;

>> xx = linspace(0,1);

>> yy = interp1(x,y,xx,'pchip');

>> yh = 1./((xx-0.3).^2+0.01)+1./((xx-0.9).^2+0.04)-6;

>> plot(x,y,'o',xx,yy,xx,yh,'--')

 162

15.4 The simultaneous equations for the clamped spline with zero end slopes can be set up as

⎪
⎪
⎪
⎪

⎭

⎪
⎪
⎪
⎪

⎬

⎫

⎪
⎪
⎪
⎪

⎩

⎪
⎪
⎪
⎪

⎨

⎧

−
−
−

=

⎪
⎪
⎪
⎪

⎭

⎪
⎪
⎪
⎪

⎬

⎫

⎪
⎪
⎪
⎪

⎩

⎪
⎪
⎪
⎪

⎨

⎧

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

0

001489.0

001843.0

00098.0

00923.0

01946.0

0

1

200800200

200800200

200800200

200600100

100400100

1

7

6

5

4

3

2

1

c

c

c

c

c

c

c

These equations can be solved for the c’s and then Eqs. (15.21) and (15.18) can be used to

solve for the b’s and the d’s. The coefficients for the intervals can be summarized as

interval a b c d

1 0 0.009801 0 -1.6E-07

2 0.824361 0.005128 -4.7E-05 1.3E-07

3 1 -0.00031 -7.7E-06 1.31E-08

4 0.735759 -0.0018 2.13E-07 2.82E-09

5 0.406006 -0.00138 1.9E-06 -8.7E-10

6 0.199148 -0.00072 1.39E-06 -2.3E-09

The fit can be displayed in graphical form as

0

0.2

0.4

0.6

0.8

1

1.2

0 500 1000

(b) The not-a-knot fit can be set up in MATLAB as

>> x = [0 100 200 400 600 800 1000];

>> y = x/200.*exp(-x/200+1);

>> xx = linspace(0,1000);

>> yc = xx/200.*exp(-xx/200+1);

>> yy = spline(x,y,xx);

>> plot(x,y,'o',xx,yy,xx,yc,'--')

 163

(c) The piecewise cubic Hermite polynomial fit can be set up in MATLAB as

>> x = [0 100 200 400 600 800 1000];

>> y = x/200.*exp(-x/200+1);

>> xx = linspace(0,1000);

>> yc = xx/200.*exp(-xx/200+1);

>> yy = interp1(x,y,xx,'pchip');

>> plot(x,y,'o',xx,yy,xx,yc,'--')

Summary: For this case, the not-a-knot fit is the best.

15.5 (a) The not-a-knot fit can be set up in MATLAB as

>> x = [-1 -0.6 -0.2 0.2 0.6 1];

>> y = [0 0 0 1 1 1];

>> xx = linspace(-1,1);

>> yy = spline(x,y,xx);

>> plot(x,y,'o',xx,yy)

 164

(b) The clamped spline with zero end slopes can be set up in MATLAB as

>> x = [-1 -0.6 -0.2 0.2 0.6 1];

>> y = [0 0 0 1 1 1];

>> ys = [0 y 0];

>> xx = linspace(-1,1);

>> yy = spline(x,ys,xx);

>> plot(x,y,'o',xx,yy)

(c) The piecewise cubic Hermite polynomial fit can be set up in MATLAB as

>> x = [-1 -0.6 -0.2 0.2 0.6 1];

>> y = [0 0 0 1 1 1];

>> xx = linspace(-1,1);

>> yy = interp1(x,y,xx,'pchip');

>> plot(x,y,'o',xx,yy)

 165

15.6 An M-file function to implement the natural spline can be written as

function yy = natspline(x,y,xx)

% natspline(x,y,xx):

% uses a natural cubic spline interpolation to find yy, the values

% of the underlying function y at the points in the vector xx.

% The vector x specifies the points at which the data y is given.

n = length(x);

m = length(xx);

aa(1,1) = 1; aa(n,n) = 1;

bb(1) = 0; bb(n) = 0;

for i = 2:n-1

 aa(i,i-1) = h(x, i - 1);

 aa(i,i) = 2 * (h(x, i - 1) + h(x, i));

 aa(i,i+1) = h(x, i);

 bb(i) = 3 * (fd(i + 1, i, x, y) - fd(i, i - 1, x, y));

end

c = aa\bb';

for i = 1:n - 1

 a(i) = y(i);

 b(i) = fd(i + 1, i, x, y) - h(x, i) / 3 * (2 * c(i) + c(i + 1));

 d(i) = (c(i + 1) - c(i)) / 3 / h(x, i);

end

for i = 1:m

 yy(i) = SplineInterp(x, n, a, b, c, d, xx(i));

end

function hh = h(x, i)

hh = x(i + 1) - x(i);

function fdd = fd(i, j, x, y)

fdd = (y(i) - y(j)) / (x(i) - x(j));

function yyy = SplineInterp(x, n, a, b, c, d, xi)

for ii = 1:n - 1

 if xi >= x(ii) - 0.000001 & xi <= x(ii + 1) + 0.000001

 yyy=a(ii)+b(ii)*(xi-x(ii))+c(ii)*(xi-x(ii))^2+d(ii)*(xi-x(ii))^3;

 break

 end

end

 166

The program can be used to duplicate Example 15.3:

>> x = [3 4.5 7 9];

>> y = [2.5 1 2.5 .5];

>> xx = linspace(3,9);

>> yy = natspline(x,y,xx);

>> plot(x,y,'o',xx,yy)

15.7 (a) The not-a-knot fit can be set up in MATLAB as

>> x = [1 3 5 6 7 9];

>> y = 0.0185*x.^5-0.444*x.^4+3.9125*x.^3-15.456*x.^2+27.069*x-14.1;

>> xx = linspace(1,9);

>> yy = spline(x,y,xx);

>> yc = 0.0185*xx.^5-0.444*xx.^4+3.9125*xx.^3-15.456*xx.^2+27.069*xx-14.1;

>> plot(x,y,'o',xx,yy,xx,yc,'--')

(b) The function can be differentiated to give

069.27912.307375.11776.10925.0)(' 234 +−+−= xxxxxf

This function can be evaluated at the end nodes to give f'(1) = 6.211 and f'(9) = 11.787.

These values can then be added to the y vector and the spline function invoked to develop

the clamped fit:

 167

>> yd = [6.211 y 11.787];

>> yy = spline(x,yd,xx);

>> plot(x,y,'o',xx,yy,xx,yc,'--')

 168

CHAPTER 16

16.1 A table of integrals can be consulted to determine

ax
a

dx cosh ln
1

 tanh =∫

Therefore,

t

d

dd

t
d

d

t
m

gc

gc

m

c

gm
dtt

m

gc

c

gm

0

0
cosh ln tanh

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
=⎟

⎟
⎠

⎞
⎜
⎜
⎝

⎛
∫

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
−⎟

⎟
⎠

⎞
⎜
⎜
⎝

⎛
cosh(0) lncosh ln

2

2

t
m

gc

gc

gm d

d

Since cosh(0) = 1 and ln(1) = 0, this reduces to

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
t

m

gc

c

m d

d

cosh ln

16.2 (a) The analytical solution can be evaluated as

[] 13.500167735.005.045.0)1()0(2)4(24

0
2

4

0

2 =−−+=+=− −−−−∫ eeexdxe xx

(b) single application of the trapezoidal rule

%)88.42(99329.1
2

999665.00
)04(==

+
− tε

(c) composite trapezoidal rule

n = 2:

%)35.15(96303.2
4

999665.0)981684.0(20
)04(==

++
− tε

n = 4:

%)47.4(3437.3
8

999665.0)99752.0981684.086466.0(20
)04(==

++++
− tε

(d) single application of Simpson’s 1/3 rule

 169

%)17.6(28427.3
6

999665.0)981684.0(40
)04(==

++
− tε

(e) composite Simpson’s 1/3 rule (n = 4)

%)84.0(47059.3
12

999665.0)981684.0(2)99752.086466.0(40
)04(==

++++
− tε

(f) Simpson’s 3/8 rule.

%)19.3(388365.3
8

999665.0)995172.0930517.0(30
)04(==

+++
− tε

16.3 (a) The analytical solution can be evaluated as

[] 12.424778)0sin(3)0(6)2/sin(3)2/(6sin36)cos36(
2/

0

2/

0
=−−+=+=+∫ ππππ

xxdxx

(b) single application of the trapezoidal rule

%)18.5(78097.11
2

69
0

2
==

+
⎟
⎠
⎞

⎜
⎝
⎛ − tεπ

(c) composite trapezoidal rule

n = 2:

%)25.1(26896.12
4

6)12132.8(29
0

2
==

++
⎟
⎠
⎞

⎜
⎝
⎛ − tεπ

n = 4:

%)3111.0(386125.12
8

6)14805.712132.877164.8(29
0

2
==

++++
⎟
⎠
⎞

⎜
⎝
⎛ − tεπ

(d) single application of Simpson’s 1/3 rule

%)0550.0(4316.12
6

6)12132.8(49
0

2
==

++
⎟
⎠
⎞

⎜
⎝
⎛ − tεπ

(e) composite Simpson’s 1/3 rule (n = 4)

%)0032.0(42518.12
12

6)12132.8(2)14805.77716.8(49
0

2
==

++++
⎟
⎠
⎞

⎜
⎝
⎛ − tεπ

(f) Simpson’s 3/8 rule.

 170

%)0243.0(42779.12
8

6)5.759808.8(39
0

2
==

+++
⎟
⎠
⎞

⎜
⎝
⎛ − tεπ

16.4 (a) The analytical solution can be evaluated as

1104
3

)2(
)2(

2

)2(
)2(

3

4
4

2

4
4

32
)241(

6
4

26
4

2

4

2

6
4

24

2

53

=
−

−−+
−

+−−+−−=

⎥
⎦

⎤
⎢
⎣

⎡
+−−=+−−

−
−∫

x
x

x
xdxxxx

(b) single application of the trapezoidal rule

%)3.378(5280
2

178929
))2(4(==

+−
−− tε

(c) composite trapezoidal rule

n = 2:

%)6.138(2634
4

1789)2(229
))2(4(==

+−+−
−− tε

n = 4:

%)4.37(875.1516
8

1789)3125.131)2(9375.1(229
))2(4(==

++−++−
−− tε

(d) single application of Simpson’s 1/3 rule

%)7.58(1752
6

1789)2(429
))2(4(==

+−+−
−− tε

(e) composite Simpson’s 1/3 rule (n = 4)

%)6685.3(5.1144
12

1789)2(2)3125.1319375.1(429
))2(4(==

+−+++−
−− tε

(f) Simpson’s 3/8 rule.

%)09.26(1392
8

1789)311(329
))2(4(==

+++−
−− tε

(g) Boole’s rule.

%)0(1104
90

)1789(7)3125.131(32)2(12)9375.1(32)29(7
))2(4(==

++−++−
−− tε

 171

16.5 (a) The analytical solution can be evaluated as

[] 0.69880579)(02.12.1

0

2.1

0
=−−−=−= −−−∫ eeedxe xx

(b) Trapezoidal rule

%)35.0(0.701260.0859920.1104160.1103120.1347350.16456609524.0

2

30119.038674.0
)957.02.1(

2

38674.049659.0
)7.095.0(

2

49659.060653.0
)5.07.0(

2

60653.074082.0
)3.05.0(

2

74082.090484.0
)1.03.0(

2

90484.01
)01.0(

==+++++=

+
−+

+
−+

+
−+

+
−+

+
−+

+
−

tε

(c) Trapezoidal and Simpson’s Rules

%)0131.0(698897.0195395.040826.009524.0
6

30119.0)38674.0(449659.0
)7.02.1(

8

49659.0)60653.074082.0(390484.0
)1.07.0(

2

90484.01
)01.0(

==++=
++

−+

+++
−+

+
−

tε

16.6 (a) The integral can be evaluated analytically as,

dy
x

yxy
x

2

3
3

4

0

2

2

2
32

3

∫−
⎥
⎦

⎤
⎢
⎣

⎡
+−

dyyy
2

)4(
)4(3

3

)4(2

2

2
32

3

∫−
+−

dyyy 81233333.21
2

2

32∫−
+−

[]2

2-

43 2433333.21 yyy +−

33333.21)2(2)2(4)2(33333.21)2(2)2(4)2(33333.21 4343 =−−−+−−+−

(b) The composite trapezoidal rule with n = 2 can be used the evaluate the inner integral at

the three equispaced values of y,

y = −2: 88
4

28)24(212
)04(−=

−−+−
−

y = 0: 24
4

16)4(20
)04(=

++
−

 172

y = 2: 40
4

36)8(212
)04(=

++−
−

These results can then be integrated in y to yield

0
4

40)24(288
))2(2(=

++−
−−

which represents a percent relative error of

%100%100
33333.21

033333.21
=×

−
=tε

which is not very good.

(c) Single applications of Simpson’s 1/3 rule can be used the evaluate the inner integral at

the three equispaced values of y,

y = −2: 66667.90
6

28)24(412
)04(−=

−−+−
−

y = 0: 33333.21
6

16)4(40
)04(=

++
−

y = 2: 33333.37
6

36)8(412
)04(=

++−
−

These results can then be integrated in y to yield

33333.21
6

33333.37)33333.21(466667.90
))2(2(=

++−
−−

which represents a percent relative error of

%0%100
33333.21

33333.2133333.21
=×

−
=tε

which is perfect

16.7 (a) The integral can be evaluated analytically as,

dzdyyzdzdyyzx
x

 820 2
4

4

4

6

0

4

4

6

0

3

1

4

∫ ∫∫ ∫ −−
−

−=⎥
⎦

⎤
⎢
⎣

⎡
−

[] dzzdzzyydzdyyz 144120 420 820
4

4

4

4

6

0

2
4

4

6

0 ∫∫∫ ∫ −−−
−=−=−

 173

[] 960)4(72)4(120)4(72)4(12072120 144120 224

4
2

4

4
=−+−−−=−=− −−∫ zzdzz

(b) Single applications of Simpson’s 1/3 rule can be used the evaluate the inner integral at

the three equispaced values of y for each value of z,

z = −4:

y = 0: 20
6

27)1(41
))1(3(=

++−
−−

y = 3: 116
6

51)25(423
))1(3(=

++
−−

y = 6: 212
6

75)49(447
))1(3(=

++
−−

These results can then be integrated in y to yield

696
6

212)116(420
)06(=

++
−

z = 0:

y = 0: 20
6

27)1(41
))1(3(=

++−
−−

y = 3: 20
6

27)1(41
))1(3(=

++−
−−

y = 6: 20
6

27)1(41
))1(3(=

++−
−−

These results can then be integrated in y to yield

120
6

20)20(420
)06(=

++
−

z = 4:

y = 0: 20
6

27)1(41
))1(3(=

++−
−−

y = 3: 76
6

3)23(425
))1(3(−=

+−+−
−−

 174

y = 6: 172
6

21)47(449
))1(3(−=

−−+−
−−

These results can then be integrated in y to yield

456
6

172)76(420
)06(−=

−−+
−

The results of the integrations in y can then be integrated in z to yield

960
6

456)120(4696
)06(=

−+
−

which represents a percent relative error of

%0%100
960

960960
=×

−
=tε

16.8 (a) The trapezoidal rule can be implemented as,

425.58
2

57
)3.910(

2

77
)5.83.9(

2

76
)85.8(

2

66
)78(

2

65.8
)67(

2

5.87
)5.46(

2

75.5
)25.35.4(

2

5.56
)225.3(

2

65
)12(

=
+

−+
+

−+
+

−+
+

−+
+

−+

+
−+

+
−+

+
−+

+
−=d

(b) The polynomial can be fit as,

>> format long

>> t = [1 2 3.25 4.5 6 7 8 8.5 9.3 10];

>> v = [5 6 5.5 7 8.5 6 6 7 7 5];

>> p = polyfit(t,v,3)

p =

 -0.00657842294444 0.01874733808337 0.56859435273356

4.46645555949356

The cubic can be plotted along with the data,

>> tt = linspace(1,10);

>> vv = polyval(p,tt);

>> plot(tt,vv,t,v,'o')

 175

The cubic can then be integrated to estimate the distance traveled,

[] 14199.5846646.4284297.0006249.0001645.0

 46646.4568594.0018747.0006578.0

10

1
234

10

1

23

=+++−=

+++−= ∫
tttt

dttttd

16.9

z w(z) ρgw(z)(60 – z) ρgzw(z)(60 – z)

60 200 0 0

50 190 1.8639E+07 9.3195E+08

40 175 3.4335E+07 1.3734E+09

30 160 4.7088E+07 1.4126E+09

20 135 5.2974E+07 1.0595E+09

10 130 6.3765E+07 6.3765E+08

0 122 7.1809E+07 0

97 105480.210
)6(3

0)4335.32974.5(2)8639.17088.43765.6(41809.7
60 ×=×

++++++
=tf

109

0
105982.510

)6(3

0)3734.10595.1(2)93195.04126.163765.0(40
60))((×=×

++++++
=−∫ dzzDzgzw

D

ρ

971.21
105480.2

105982.5
9

10

=
×
×

=d

16.10 (a) Trapezoidal rule:

1363.996
)6(2

311.13)455.19982.27069.36129.51937.54(20
30 =

++++++
=f

 176

m 139.13
1363.996

45.13088

1363.996

)6(2

332.399)385.486631.559033.586292.511684.274(20
30

==

++++++

=f

(b) Simpson’s 1/3 rule:

294.1042
)6(3

311.13)982.27129.51(2)455.19069.36937.54(40
30 =

++++++
=f

m 6797.12
294.1042

97.13215

294.1042

)6(3

332.399)631.559292.511(2)385.486033.586684.274(40
30

==

++++++

=f

 177

CHAPTER 17

17.1 The integral can be evaluated analytically as,

dxxxdx
x

xI 9124
3

2
2

1

22
2

1

2

∫∫ −++=⎟
⎠
⎞

⎜
⎝
⎛ +=

8333.25
1

9
)1(12

3

)1(4

2

9
)2(12

3

)2(49
12

3

4 33
2

1

3

=+−−−+=⎥
⎦

⎤
⎢
⎣

⎡
−+=

x
x

x
I

The tableau depicting the implementation of Romberg integration to εs = 0.5% is

iteration → 1 2 3

εt → 6.9355% 0.1613% 0.0048%

εa → 1.6908% 0.0098%

1 27.62500000 25.87500000 25.83456463

2 26.31250000 25.83709184

4 25.95594388

Thus, the result is 25.83456.

17.2 (a) The integral can be evaluated analytically as,

[] 87808.34214585.33854.121615.001094.0
8

0
2345 =++−+−= xxxxxI

(b) The tableau depicting the implementation of Romberg integration to εs = 0.5% is

iteration → 1 2 3 4

εt → 20.1699% 42.8256% 0.0000% 0.0000%

εa → 9.9064% 2.6766% 0.000000%

1 27.84320000 19.94133333 34.87808000 34.87808000

2 21.91680000 33.94453333 34.87808000

4 30.93760000 34.81973333

8 33.84920000

Thus, the result is exact.

(c) The transformations can be computed as

ddd
d dxdxdxx

x
x 4

2

08
 44

2

)08()08(
=

−
=+=

−++
=

These can be substituted to yield

[] ddddd dxxxxxI 4 2)44(2917.6)44(1562.4)44(8646.0)44(0547.0
1

1

234∫−
++++−+++−=

 178

The transformed function can be evaluated using the values from Table 17.1

87808.34)774596669.0(5555556.0)0(8888889.0)774596669.0(5555556.0 =++−= fffI

which is exact.

(d)
>> format long

>> y = inline('-0.0547*x.^4+0.8646*x.^3-4.1562*x.^2+6.2917*x+2');

>> I = quad(y,0,8)

I =

 34.87808000000000

17.3 Although it’s not required, the analytical solution can be evaluated simply as

[] 541.1710738)1(
3

0

3

0
=−== ∫ xedxxeI xx

(a) The tableau depicting the implementation of Romberg integration to εs = 0.5% is

iteration → 1 2 3

εt → 119.5350% 5.8349% 0.1020%

εa → 26.8579% 0.3579%

1 90.38491615 43.57337260 41.21305531

2 55.27625849 41.36057514

4 44.83949598

which represents a percent relative error of 0.102 %.

(b) The transformations can be computed as

ddd
d dxdxdxx

x
x 5.1

2

03
 5.15.1

2

)03()03(
=

−
=+=

−++
=

These can be substituted to yield

[] d
x..

d dxex..I d 1.5)5151(
5151

1

1

+

−
+= ∫

The transformed function can be evaluated using the values from Table 17.1

39.6075058)577350269.0()577350269.0(=+−= ffI

which represents a percent relative error of 3.8 %.

(c) Using MATLAB

>> format long

>> I = quad(inline('x.*exp(x)'),0,3)

 179

I =

 41.17107385090233

which represents a percent relative error of 1.1×10−8 %.

>> I = quadl(inline('x.*exp(x)'),0,3)

I =

 41.17107466800178

which represents a percent relative error of 2×10−6 %.

17.4 The exact solution can be evaluated simply as

>> format long

>> erf(1.5)

ans =

 0.96610514647531

(a) The transformations can be computed as

ddd
d dxdxdxx

x
x 75.0

2

05.1
 75.075.0

2

)05.1()05.1(
=

−
=+=

−++
=

These can be substituted to yield

[] d
x

dxeI d 0.75
2 2)75.075.0(

1

1

+−

−∫=
π

The transformed function can be evaluated using the values from Table 17.1

90.97417312)577350269.0()577350269.0(=+−= ffI

which represents a percent relative error of 0.835 %.

(b) The transformed function can be evaluated using the values from Table 17.1

30.96550208)774596669.0(5555556.0)0(8888889.0)774596669.0(5555556.0 =++−= fffI

which represents a percent relative error of 0.062 %.

17.5 (a) The tableau depicting the implementation of Romberg integration to εs = 0.5% is

iteration → 1 2 3 4

εa → 19.1131% 1.0922% 0.035826%

1 199.66621287 847.93212300 1027.49455856 1051.60670352

2 685.86564547 1016.27190634 1051.22995126

4 933.67034112 1049.04507345

8 1020.20139037

 180

Note that if 8 iterations are implemented, the method converges on a value of

1053.38523686. This result is also obtained if you use the composite Simpson’s 1/3 rule

with 1024 segments.

(b) The transformations can be computed as

ddd
d dxdxdxx

x
x 15

2

030
 1515

2

)030()030(
=

−
=+=

−++
=

These can be substituted to yield

d
x

d

d dxe
x

x
I d 15

1522

1515
 200

30/)1515(5.2
1

1
⎥
⎦

⎤
⎢
⎣

⎡
+
+

= +−

−∫

The transformed function can be evaluated using the values from Table 17.1

1162.93396)577350269.0()577350269.0(=+−= ffI

(c) Interestingly, the quad function encounters a problem and exceeds the maximum

number of iterations

>> format long

>> I = quad(inline('200*x/(7+x)*exp(-2.5*x/30)'),0,30)

Warning: Maximum function count exceeded; singularity likely.

(Type "warning off MATLAB:quad:MaxFcnCount" to suppress this

warning.)

> In quad at 88

I =

 1.085280043451920e+003

The quadl function converges rapidly, but does not yield a very accurate result:

>> I = quadl(inline('200*x/(7+x)*exp(-2.5*x/30)'),0,30)

I =

 1.055900924411335e+003

17.6 The integral to be evaluated is

() dtteI t 2sin10
2/1

0

2

∫ −= π

(a) The tableau depicting the implementation of Romberg integration to εs = 0.1% is

iteration → 1 2 3 4

εa → 25.0000% 2.0824% 0.025340%

1 0.00000000 20.21768866 15.16502516 15.41501768

2 15.16326649 15.48081663 15.41111155

4 15.40142910 15.41546811

 181

8 15.41195836

(b) The transformations can be computed as

ddd
d dxdxdxx

x
x 25.0

2

05.0
 25.025.0

2

)05.0()05.0(
=

−
=+=

−++
=

These can be substituted to yield

[] dd
x

dxxeI d 0.25)25.025.0(2sin10
2)25.025.0(

1

1
+= +−

−∫ π

For the two-point application, the transformed function can be evaluated using the values

from Table 17.1

99782.11313728.4684096.7)577350269.0()577350269.0(=+=+−= ffI

For the three-point application, the transformed function can be evaluated using the values

from Table 17.1

65755.15)684915.2(5555556.0)16327.15(8888889.0)237449.1(5555556.0

)774596669.0(5555556.0)0(8888889.0)774596669.0(5555556.0

=++=

++−= fffI

(c)
>> format long

>> I = quad(inline('(10*exp(-x).*sin(2*pi*x)).^2'),0,0.5)

I =

 15.41260804934509

17.7 The integral to be evaluated is

drr
r

I 2
75.0

110
.750

0

7/1

∫ ⎟
⎠
⎞

⎜
⎝
⎛ −= π

(a) The tableau depicting the implementation of Romberg integration to εs = 0.1% is

iteration → 1 2 3 4

εa → 25.0000% 1.0725% 0.098313%

1 0.00000000 10.67030554 12.88063803 13.74550712

2 8.00272915 12.74249225 13.73199355

4 11.55755148 13.67014971

8 13.14200015

(b) The transformations can be computed as

ddd
d dxdxdxx

x
x 375.0

2

075.0
 375.0375.0

2

)075.0()075.0(
=

−
=+=

−++
=

 182

These can be substituted to yield

dd
d dxx

x
I 0.375)375.0375.0(2

75.0

375.0375.0
110

2
7/1

1

1 ⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
+⎟

⎠

⎞
⎜
⎝

⎛ +
−= ∫−

π

For the two-point application, the transformed function can be evaluated using the values

from Table 17.1

77171.14)577350269.0()577350269.0(=+−= ffI

(c)
>> format long

>> I = quad(inline('10*(1-x/0.75).^(1/7)*2*pi.*x'),0,0.75)

I =

 14.43168560836254

17.8 The integral to be evaluated is

dteetI tt)25)(4.0cos49(
8

2

15.05.02∫ ++= −

(a) The tableau depicting the implementation of Romberg integration to εs = 0.1% is

iteration → 1 2 3 4

εa → 7.4179% 0.1054% 0.001212%

1 411.26095167 317.15529472 322.59571622 322.34570788

2 340.68170896 322.25568988 322.34961426

4 326.86219465 322.34374398

8 323.47335665

(b)
>> format long

>> y = inline('(9+4*cos(0.4*x).^2).*(5*exp(-0.5*x)+2*exp(0.15*x))')

>> I = quadl(y,2,8)

I =

 3.223483672542467e+002

17.9 (a) The integral can be evaluated analytically as,

dy
x

yxy
x

2

3
3

4

0

2

2

2
32

3

∫−
⎥
⎦

⎤
⎢
⎣

⎡
+−

dyyy
2

)4(
)4(3

3

)4(2

2

2
32

3

∫−
+−

dyyy 81233333.21
2

2

32∫−
+−

 183

[]2

2-

43 2433333.21 yyy +−

33333.21)2(2)2(4)2(33333.21)2(2)2(4)2(33333.21 4343 =−−−+−−+−

(b) The operation of the dblquad function can be understood by invoking help,

>> help dblquad

A session to use the function to perform the double integral can be implemented as,

>> dblquad(inline('x.^2-3*y.^2+x*y.^3'),0,4,-2,2)

ans =

 21.3333

 184

CHAPTER 18

18.1 (a) The analytical solution can be derived by the separation of variables,

dtt
y

dy
 5.13∫∫ −=

The integrals can be evaluated to give,

Ct
t

y +−= 5.1
4

ln
4

Substituting the initial conditions yields C = 0. Substituting this value and taking the

exponential gives

ttey 5.14/4 −=

(b) Euler method (h = 0.5):

t y dy/dt

0 1 -1.5

0.5 0.25 -0.34375

1 0.078125 -0.03906

1.5 0.058594 0.109863

2 0.113525

Euler method (h = 0.25):

t y dy/dt

0 1 -1.5

0.25 0.625 -0.92773

0.5 0.393066 -0.54047

0.75 0.25795 -0.2781

1 0.188424 -0.09421

1.25 0.164871 0.074707

1.5 0.183548 0.344153

1.75 0.269586 1.040434

2 0.529695

(c) Midpoint method (h = 0.5)

t y dy/dt tm ym dym/dt

0 1 -1.5 0.25 0.625 -0.92773

0.5 0.536133 -0.73718 0.75 0.351837 -0.37932

1 0.346471 -0.17324 1.25 0.303162 0.13737

1.5 0.415156 0.778417 1.75 0.60976 2.353292

2 1.591802

 185

(d) RK4 (h = 0.5)

t y k1 tm ym k2 tm ym k3 te ye k4 φ

0 1.0000 -1.5000 0.25 0.6250 -0.9277 0.25 0.7681 -1.1401 0.5 0.4300 -0.5912 -1.0378

0.5 0.4811 -0.6615 0.75 0.3157 -0.3404 0.75 0.3960 -0.4269 1 0.2676 -0.1338 -0.3883

1 0.2869 -0.1435 1.25 0.2511 0.1138 1.25 0.3154 0.1429 1.5 0.3584 0.6720 0.1736

1.5 0.3738 0.7008 1.75 0.5489 2.1186 1.75 0.9034 3.4866 2 2.1170 13.7607 4.2786

2 2.5131

All the solutions can be presented graphically as

0

1

2

3

0 0.5 1 1.5 2

Euler (h=0.5) Euler (h=0.25) Midpoint

Analytical RK4

18.2 (a) The analytical solution can be derived by the separation of variables,

dxx
y

dy
 21∫∫ +=

The integrals can be evaluated to give,

Cxxy ++= 22

Substituting the initial conditions yields C = 2. Substituting this value and rearranging gives

2

2

2

2
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ ++
=

xx
y

Some selected value can be computed as

x y

0 1

0.25 1.336914

0.5 1.890625

0.75 2.743164

 186

1 4

(b) Euler’s method:

25.1)25.0(11)25.0(

11))0(21()1,0(

)1,0()0()25.0(

=+=

=+=

+=

y

f

hfyy

66926.1)25.0(67705.125.1)5.0(

67705.125.1))25.0(21()25.1,25.0(

25.0)25.1,25.0()25.0()5.0(

=+=

=+=

+=

y

f

fyy

The remaining steps can be implemented and summarized as

x y dy/dx

0 1 1

0.25 1.25 1.67705

0.5 1.66926 2.584

0.75 2.31526 3.804

1 3.26626 5.42184

(c) Heun’s method:

Predictor:

11))0(21(1 =+=k

25.1)25.0(11)25.0(=+=y

6771.125.1))25.0(21(2 =+=k

Corrector:

33463.125.0
2

6771.11
1)25.0(=

+
+=y

The remaining steps can be implemented and summarized as

x y k1 xe ye k2 dy/dx

0 1 1.0000 0.25 1.25 1.6771 1.3385

0.25 1.33463 1.7329 0.5 1.76785 2.6592 2.1961

0.5 1.88364 2.7449 0.75 2.56987 4.0077 3.3763

0.75 2.72772 4.1290 1 3.75996 5.8172 4.9731

1 3.97099

 187

(d) Ralston’s method:

Predictor:

11))0(21(1 =+=k

1875.1)1875.0(11)1875.0(=+=y

49837.11875.1))1875.0(21(2 =+=k

Corrector:

33306.125.0
3

)49837.1(21
1)25.0(=

+
+=y

The remaining steps can be implemented and summarized as

x y k1 x + 3/4h y + (3/4)k1h k2 dy/dx

0 1 1 0.1875 1.1875 1.49837 1.3322

0.25 1.33306 1.73187 0.4375 1.65779 2.41416 2.1867

0.5 1.87974 2.74208 0.6875 2.39388 3.67464 3.3638

0.75 2.72069 4.12363 0.9375 3.49387 5.37392 4.9572

1 3.95998

(e) RK4

x y k1 xm ym k2 xm ym k3 xe ye k4 φ

0 1.0000 1 0.125 1.1250 1.32583 0.125 1.1657 1.34961 0.25 1.3374 1.73469 1.3476

0.25 1.3369 1.73436 0.375 1.5537 2.18133 0.375 1.6096 2.2202 0.5 1.8919 2.75096 2.2147

0.5 1.8906 2.74997 0.625 2.2343 3.36322 0.625 2.3110 3.42043 0.75 2.7457 4.14253 3.4100

0.75 2.7431 4.14056 0.875 3.2606 4.96574 0.875 3.3638 5.04368 1 4.0040 6.00299 5.0271

1 3.9998

0

1

2

3

4

0 0.2 0.4 0.6 0.8 1

Euler Heun Analytical

RK4 Ralston

 188

18.3 (a) Heun’s method:

Predictor:

2)0()1(2 2
1 −=+−=k

0)5.0)(2(1)5.0(=−+=y

25.05.0)0(2 2
2 =+−=k

Corrector:

5625.05.0
2

25.02
1)5.0(=

+−
+=y

The remaining steps can be implemented and summarized as

t y k1 xi+1 yi+1 k2 dy/dt

0 1 -2.0000 0.5 0 0.2500 -0.875

0.5 0.5625 -0.8750 1 0.125 0.7500 -0.0625

1 0.53125 -0.0625 1.5 0.5 1.2500 0.59375

1.5 0.82813 0.5938 2 1.125 1.7500 1.17188

2 1.41406 1.1719

(b) As in Part (a), the corrector can be represented as

5625.05.0
2

)5.0)0(2(2
1

2
1

1 =
+−+−

+=+iy

The corrector can then be iterated to give

28125.05.0
2

)5.0)5625.0(2(2
1

2
2

1 =
+−+−

+=+iy

421875.05.0
2

)5.0)28125.0(2(2
1

2
3

1 =
+−+−

+=+iy

The iterations can be continued until the percent relative error falls below 0.1%. This

occurs after 12 iterations with the result that y(0.5) = 0.37491 with εa = 0.073%. The

remaining values can be computed in a like fashion to give

t y

0 1.0000000

0.5 0.3749084

1 0.3334045

1.5 0.6526523

 189

2 1.2594796

(c) Midpoint method

2)0()1(2 2
1 −=+−=k

5.0)25.0)(2(1)25.0(=−+=y

9375.025.0)5.0(2 2
2 −=+−=k

53125.05.0)9375.0(1)5.0(=−+=y

The remainder of the computations can be implemented in a similar fashion as listed below:

t y dy/dt tm ym dym/dt

0 1 -2.0000 0.25 0.5 -0.9375

0.5 0.53125 -0.8125 0.75 0.328125 -0.0938

1 0.48438 0.0313 1.25 0.492188 0.57813

1.5 0.77344 0.7031 1.75 0.949219 1.16406

2 1.35547

(d) Ralston’s method:

2)0()1(2 2
1 −=+−=k

25.0)375.0)(2(1)375.0(=−+=y

3594.0375.0)25.0(2 2
2 −=+−=k

54688.05.0
3

)3594.0(22
1)25.0(=

−+−
+=y

The remaining steps can be implemented and summarized as

t y k1 t + 3/4h y + (3/4)k1h k2 dy/dt

0 1 -2.0000 0.375 0.25 -0.3594 -0.9063

0.5 0.54688 -0.8438 0.875 0.230469 0.3047 -0.0781

1 0.50781 -0.0156 1.375 0.501953 0.8867 0.58594

1.5 0.80078 0.6484 1.875 1.043945 1.4277 1.16797

2 1.38477

All the versions can be plotted as:

 190

0

0.5

1

1.5

0 0.5 1 1.5 2

Heun without corr Ralston

Midpoint Heun with corr

18.4 (a) The solution to the differential equation is

tkgepp 0=

Taking the natural log of this equation gives

tkpp g+= 0lnln

Therefore, a semi-log plot (ln p versus t) should yield a straight line with a slope of kg. The

plot, along with the linear regression best fit line is shown below. The estimate of the

population growth rate is kg = 0.0178/yr.

y = 0.0178x - 26.808

R
2
 = 0.9976

7.8

8

8.2

8.4

8.6

8.8

1940 1960 1980 2000

(b) The ODE can be integrated with the fourth-order RK method with the results tabulated

and plotted below:

t p k1 pmid k2 pmid k3 pend k4 φ

1950 2555.00 45.41 2668.53 47.43 2673.58 47.52 2792.60 49.64 47.49

1955 2792.46 49.63 2916.55 51.84 2922.06 51.94 3052.15 54.25 51.91

1960 3051.99 54.25 3187.61 56.66 3193.64 56.76 3335.81 59.29 56.73

1965 3335.64 59.29 3483.87 61.92 3490.45 62.04 3645.84 64.80 62.00

1970 3645.66 64.80 3807.66 67.68 3814.85 67.81 3984.69 70.82 67.77

1975 3984.48 70.82 4161.54 73.97 4169.41 74.11 4355.02 77.41 74.06

1980 4354.80 77.40 4548.31 80.84 4556.91 81.00 4759.78 84.60 80.95

 191

1985 4759.54 84.60 4971.03 88.36 4980.43 88.52 5202.15 92.46 88.47

1990 5201.89 92.46 5433.04 96.57 5443.31 96.75 5685.64 101.06 96.69

1995 5685.35 101.05 5937.98 105.54 5949.21 105.74 6214.06 110.45 105.68

2000 6213.75 110.44 6489.86 115.35 6502.13 115.57 6791.60 120.72 115.50

2005 6791.25 120.71 7093.02 126.07 7106.43 126.31 7422.81 131.93 126.24

2010 7422.43 131.93 7752.25 137.79 7766.90 138.05 8112.68 144.20 137.97

2015 8112.27 144.19 8472.74 150.60 8488.76 150.88 8866.67 157.60 150.79

2020 8866.22 157.59 9260.20 164.59 9277.70 164.90 9690.74 172.25 164.80

2025 9690.24 172.24 10120.84 179.89 10139.97 180.23 10591.40 188.25 180.12

2030 10590.85 188.24 11061.47 196.61 11082.38 196.98 11575.76 205.75 196.86

2035 11575.17 205.74 12089.52 214.88 12112.37 215.29 12651.61 224.87 215.16

2040 12650.96 224.86 13213.11 234.85 13238.09 235.30 13827.45 245.77 235.16

2045 13826.74 245.76 14441.14 256.68 14468.44 257.17 15112.57 268.61 257.01

2050 15111.79

0

4000

8000

12000

16000

1950 1970 1990 2010 2030 2050

18.5 (a) The analytical solution can be used to compute values at times over the range. For

example, the value at t = 1955 can be computed as

2.826,2
)555,2000,12(555,2

000,12
555,2

)19501955(026.0
=

−+
=

−−e
p

Values at the other times can be computed and displayed along with the data in the plot

below.

(b) The ODE can be integrated with the fourth-order RK method with the results tabulated

and plotted below:

t p-rk4 k1 tm ym k2 tm ym k3 te ye k4 φ

1950 2555.0 52.29 1952.5 2685.7 54.20 1952.5 2690.5 54.27 1955.0 2826.3 56.18 54.23

1955 2826.2 56.17 1957.5 2966.6 58.06 1957.5 2971.3 58.13 1960.0 3116.8 59.99 58.09

1960 3116.6 59.99 1962.5 3266.6 61.81 1962.5 3271.1 61.87 1965.0 3425.9 63.64 61.83

1965 3425.8 63.64 1967.5 3584.9 65.36 1967.5 3589.2 65.41 1970.0 3752.8 67.06 65.37

1970 3752.6 67.06 1972.5 3920.3 68.63 1972.5 3924.2 68.66 1975.0 4096.0 70.15 68.63

1975 4095.8 70.14 1977.5 4271.2 71.52 1977.5 4274.6 71.55 1980.0 4453.5 72.82 71.52

1980 4453.4 72.82 1982.5 4635.4 73.97 1982.5 4638.3 73.98 1985.0 4823.3 75.00 73.95

1985 4823.1 75.00 1987.5 5010.6 75.88 1987.5 5012.8 75.89 1990.0 5202.6 76.62 75.86

 192

1990 5202.4 76.62 1992.5 5394.0 77.20 1992.5 5395.5 77.21 1995.0 5588.5 77.63 77.18

1995 5588.3 77.63 1997.5 5782.4 77.90 1997.5 5783.1 77.90 2000.0 5977.8 78.00 77.87

2000 5977.7 78.00 2002.5 6172.7 77.94 2002.5 6172.5 77.94 2005.0 6367.4 77.71 77.91

2005 6367.2 77.71 2007.5 6561.5 77.32 2007.5 6560.5 77.32 2010.0 6753.8 76.77 77.29

2010 6753.7 76.77 2012.5 6945.6 76.06 2012.5 6943.9 76.07 2015.0 7134.0 75.21 76.04

2015 7133.9 75.21 2017.5 7321.9 74.21 2017.5 7319.4 74.23 2020.0 7505.0 73.09 74.20

2020 7504.9 73.09 2022.5 7687.6 71.83 2022.5 7684.5 71.85 2025.0 7864.2 70.47 71.82

2025 7864.0 70.47 2027.5 8040.2 68.98 2027.5 8036.5 69.01 2030.0 8209.1 67.43 68.98

2030 8208.9 67.43 2032.5 8377.5 65.75 2032.5 8373.3 65.80 2035.0 8537.9 64.04 65.76

2035 8537.7 64.05 2037.5 8697.8 62.23 2037.5 8693.3 62.28 2040.0 8849.1 60.41 62.25

2040 8849.0 60.41 2042.5 9000.0 58.50 2042.5 8995.2 58.56 2045.0 9141.8 56.61 58.53

2045 9141.6 56.62 2047.5 9283.1 54.65 2047.5 9278.2 54.72 2050.0 9415.2 52.73 54.68

2050 9415.0

0

2000

4000

6000

8000

10000

1950 1970 1990 2010 2030 2050

pdata panal p-rk4

Thus, the RK4 results are so close to the analytical solution that the two results are

indistinguishable graphically.

18.6 We can solve this problem with the M-file Eulode (Fig. 18.3). First, we develop a function

to compute the derivative

function dv = dvdt(t, v)

if t < 10

 % chute is unopened

 dv = 9.81 - 0.25/80*v^2;

else

 % chute is opened

 dv = 9.81 - 5/80*v^2;

end

Notice how we have used an If statement to use a higher drag coefficient for times after the

cord is pulled. The Eulode function can then be used to generate results and display them

graphically..

>> [t,v] = Eulode(@dvdt,[0 30],0,0.1);

>> plot(t,v)

 193

18.7 (a) Euler’s method:

t y z dy/dt dz/dt

0 2 4 16 -16

0.1 3.6 2.4 3.658049 -10.368

0.2 3.965805 1.3632 -2.35114 -3.68486

0.3 3.730691 0.994714 -3.77687 -1.84568

0.4 3.353004 0.810147 -3.99072 -1.10035

0

1

2

3

4

5

0 0.1 0.2 0.3 0.4

y

z

(b) 4th-order RK method:

16)4(5)2(2)4,2,0(0
11,1 =+−== −efk

16
2

)4(2
)4,2,0(

2

22,1 −=−== fk

2.3)05.0(164)05.0(

8.2)05.0(162)05.0(

=−=

=+=

z

y

 194

336.14
2

)2.3(8.2
)2.3,8.2,05.0(

619671.9)2.3(5)8.2(2)2.3,8.2,05.0(

2

22,2

05.0
11,2

−=−==

=+−== −

fk

efk

2832.3)05.0(336.144)05.0(

480984.2)05.0(619671.92)05.0(

=−=

=+=

z

y

3718.13
2

)2832.3(480984.2
)2832.3,480984.2,05.0(

65342.10)2832.3(5)480984.2(2)2832.3,480984.2,05.0(

2

22,3

05.0
11,3

−=−==

=+−== −

fk

efk

662824.2)1.0(3718.134)1.0(

065342.3)1.0(65342.102)1.0(

=−=

=+=

z

y

8676.10
2

)662824.2(065342.3
)662824.2,065342.3,1.0(

916431.5)2832.3(5)065342.3(2)662824.2,065342.3,1.0(

2

22,4

1.0
11,4

−=−==

=+−== −

fk

efk

The k’s can then be used to compute the increment functions,

7139.13
6

8676.10)3718.13336.14(216

41043.10
6

916431.5)65342.10619671.9(216

2

1

−=
−−−+−

=

=
+++

=

φ

φ

These slope estimates can then be used to make the prediction for the first step

2.628615)1.0(7139.134)1.0(

3.041043)1.0(41043.102)1.0(

=−=

=+=

z

y

The remaining steps can be taken in a similar fashion and the results summarized as

t y z

0 2 4

0.1 3.041043 2.628615

0.2 3.342571 1.845308

0.3 3.301983 1.410581

0.4 3.107758 1.149986

A plot of these values can be developed.

 195

0

1

2

3

4

5

0 0.1 0.2 0.3 0.4

y

z

18.8 The second-order van der Pol equation can be reexpressed as a system of 2 first-order

ODEs,

yzy
dt

dz

z
dt

dy

−−=

=

)1(2

(a) Euler (h = 0.2). Here are the first few steps. The remainder of the computation would be

implemented in a similar fashion and the results displayed in the plot below.

t y (h = 0.2) z (h = 0.2) dy/dt dz/dt

0 1 1 1 -1

0.2 1.2 0.8 0.8 -1.552

0.4 1.36 0.4896 0.4896 -1.77596

0.6 1.45792 0.1344072 0.134407 -1.6092

0.8 1.4848014 -0.187433 -0.18743 -1.25901

(b) Euler (h = 0.1). Here are the first few steps. The remainder of the computation would be

implemented in a similar fashion and the results displayed in the plot below.

t y (h = 0.1) z (h = 0.1) dy/dt dz/dt

0 1 1 1 -1

0.1 1.1 0.9 0.9 -1.289

0.2 1.19 0.7711 0.7711 -1.51085

0.3 1.26711 0.6200145 0.620015 -1.64257

0.4 1.3291115 0.4557574 0.455757 -1.67847

 196

-4

-3

-2

-1

0

1

2

3

4

0 2 4 6 8 10

y (h = 0.1)

z (h = 0.1)

y (h = 0.2)

z (h = 0.2)

18.9 The second-order equation can be reexpressed as a system of two first-order ODEs,

y
dt

dz

z
dt

dy

9−=

=

(a) Euler. Here are the first few steps along with the analytical solution. The remainder of

the computation would be implemented in a similar fashion and the results displayed in the

plot below.

t yEuler zEuler dy/dt dz/dt yanalytical

0 1 0 0 -9 1

0.1 1 -0.9 -0.9 -9 0.955336

0.2 0.91 -1.8 -1.8 -8.19 0.825336

0.3 0.73 -2.619 -2.619 -6.57 0.62161

0.4 0.4681 -3.276 -3.276 -4.2129 0.362358

-5

-4

-3

-2

-1

0

1

2

3

4

0 1 2 3 4

yEuler

yanal

 197

(b) RK4. Here are the first few steps along with the analytical solution. The remainder of

the computation would be implemented in a similar fashion and the results displayed in the

plot below.

9)1(99)0,1,0(

0)0,1,0(

22,1

11,1

−=−=−==

===

yfk

zfk

45.0)05.0(90)05.0(

1)05.0(01)05.0(

−=−=

=+=

z

y

9)1(9)45.0,1,05.0(

45.0)45.0,1,05.0(

22,2

11,2

−=−=−=

−=−=

fk

fk

45.0)05.0(90)05.0(

9775.0)05.0)(45.0(1)05.0(

−=−=

=−+=

z

y

7975.8)9775.0(9)45.0,9775.0,05.0(

45.0)45.0,9775.0,05.0(

22,3

11,3

−=−=−=

−=−=

fk

fk

8798.0)1.0(7975.80)1.0(

9550.0)1.0)(45.0(1)1.0(

−=−=

=−+=

z

y

5950.8)9550.0(9)8798.0,9550.0,1.0(

8798.0)8798.0,9550.0,1.0(

22,4

11,4

−=−=−=

−=−=

fk

fk

The k’s can then be used to compute the increment functions,

8650.8
6

5950.8)7975.89(29

4466.0
6

8798.0)45.045.0(20

2

1

−=
−−−+−

=

−=
−−−+

=

φ

φ

These slope estimates can then be used to make the prediction for the first step

8865.0)1.0(8650.80)1.0(

9553.0)1.0(4466.01)1.0(

−=−=

=−=

z

y

The remaining steps can be taken in a similar fashion and the first few results summarized

as

 198

t y z yanal

0 1.0000 0.0000 1.00000

0.1 0.9553 -0.8865 0.95534

0.2 0.8253 -1.6938 0.82534

0.3 0.6216 -2.3498 0.62161

0.4 0.3624 -2.7960 0.36236

0.5 0.0708 -2.9924 0.07074

As can be seen, the results agree with the analytical solution closely. A plot of all the values

can be developed and indicates the same close agreement.

-5

-4

-3

-2

-1

0

1

2

3

4

0 1 2 3 4

yRK4

yanal

18.10 A MATLAB M-file for Heun’s method with iteration can be developed as

function [t,y] = Heun(dydt,tspan,y0,h,es,maxit)

% [t,y] = Heun(dydt,tspan,y0,h):

% uses the midpoint method to integrate an ODE

% input:

% dydt = name of the M-file that evaluates the ODE

% tspan = [ti, tf] where ti and tf = initial and

% final values of independent variable

% y0 = initial value of dependent variable

% h = step size

% es = stopping criterion (%)

% optional (default = 0.001)

% maxit = maximum iterations of corrector

% optional (default = 50)

% es = (optional) stopping criterion (%)

% maxit = (optional) maximum allowable iterations

% output:

% t = vector of independent variable

% y = vector of solution for dependent variable

% if necessary, assign default values

if nargin<6, maxit = 50; end %if maxit blank set to 50

if nargin<5, es = 0.001; end %if es blank set to 0.001

ti = tspan(1);

tf = tspan(2);

t = (ti:h:tf)';

n = length(t);

% if necessary, add an additional value of t

 199

% so that range goes from t = ti to tf

if t(n)<tf

 t(n+1) = tf;

 n = n+1;

end

y = y0*ones(n,1); %preallocate y to improve efficiency

iter = 0;

for i = 1:n-1

 hh = t(i+1) - t(i);

 k1 = feval(dydt,t(i),y(i));

 y(i+1) = y(i) + k1*hh;

 while (1)

 yold = y(i+1);

 k2 = feval(dydt,t(i)+hh,y(i+1));

 y(i+1) = y(i) + (k1+k2)/2*hh;

 iter = iter + 1;

 if y(i+1) ~= 0, ea = abs((y(i+1) - yold)/y(i+1)) * 100; end

 if ea <= es | iter >= maxit, break, end

 end

end

plot(t,y)

Here is the test of the solution of Prob. 18.5. First, an M-file holding the differential

equation is written as

function dp = dpdt(t, p)

dp = 0.026*(1-p/12000)*p;

Then the M-file can be invoked as in

>> [t,p]=Heun(@dpdt,[1950 2000],2555,5,0.1);

>> disp([t,p])

 1.0e+003 *

 1.9500 2.5550

 1.9550 2.8261

 1.9600 3.1165

 1.9650 3.4256

 1.9700 3.7523

 1.9750 4.0953

 1.9800 4.4527

 1.9850 4.8222

 1.9900 5.2012

 1.9950 5.5868

 2.0000 5.9759

The following plot is generated

 200

18.11 A MATLAB M-file for the midpoint method can be developed as

function [t,y] = midpoint(dydt,tspan,y0,h)

% [t,y] = midpoint(dydt,tspan,y0,h):

% uses the midpoint method to integrate an ODE

% input:

% dydt = name of the M-file that evaluates the ODE

% tspan = [ti, tf] where ti and tf = initial and

% final values of independent variable

% y0 = initial value of dependent variable

% h = step size

% output:

% t = vector of independent variable

% y = vector of solution for dependent variable

ti = tspan(1);

tf = tspan(2);

t = (ti:h:tf)';

n = length(t);

% if necessary, add an additional value of t

% so that range goes from t = ti to tf

if t(n)<tf

 t(n+1) = tf;

 n = n+1;

end

y = y0*ones(n,1); %preallocate y to improve efficiency

for i = 1:n-1

 hh = t(i+1) - t(i);

 k1 = feval(dydt,t(i),y(i));

 ymid = y(i) + k1*hh/2;

 k2 = feval(dydt,t(i)+hh/2,ymid);

 y(i+1) = y(i) + k2*hh;

end

plot(t,y)

Here is the test of the solution of Prob. 18.5. First, an M-file holding the differential

equation is written as

function dp = dpdt(t, p)

dp = 0.026*(1-p/12000)*p;

 201

Then the M-file can be invoked as in

>> [t,p]=midpoint(@dpdt,[1950 2000],2555,5);

>> disp([t,p])

 1.0e+003 *

 1.9500 2.5550

 1.9550 2.8260

 1.9600 3.1163

 1.9650 3.4253

 1.9700 3.7521

 1.9750 4.0953

 1.9800 4.4529

 1.9850 4.8227

 1.9900 5.2021

 1.9950 5.5881

 2.0000 5.9776

The following plot is generated

18.12 A MATLAB M-file for the fourth-order RK method can be developed as

function [t,y] = rk4(dydt,tspan,y0,h)

% [t,y] = rk4(dydt,tspan,y0,h):

% uses the fourth-order Runge-Kutta method to integrate an ODE

% input:

% dydt = name of the M-file that evaluates the ODE

% tspan = [ti, tf] where ti and tf = initial and

% final values of independent variable

% y0 = initial value of dependent variable

% h = step size

% output:

% t = vector of independent variable

% y = vector of solution for dependent variable

ti = tspan(1);

tf = tspan(2);

t = (ti:h:tf)';

n = length(t);

% if necessary, add an additional value of t

 202

% so that range goes from t = ti to tf

if t(n)<tf

 t(n+1) = tf;

 n = n+1;

end

y = y0*ones(n,1); %preallocate y to improve efficiency

for i = 1:n-1

 hh = t(i+1) - t(i);

 k1 = feval(dydt,t(i),y(i));

 ymid = y(i) + k1*hh/2;

 k2 = feval(dydt,t(i)+hh/2,ymid);

 ymid = y(i) + k2*hh/2;

 k3 = feval(dydt,t(i)+hh/2,ymid);

 yend = y(i) + k3*hh;

 k4 = feval(dydt,t(i)+hh,yend);

 phi = (k1+2*(k2+k3)+k4)/6;

 y(i+1) = y(i) + phi*hh;

end

plot(t,y)

Here is the test of the solution of Prob. 18.2. First, an M-file holding the differential

equation is written as

function dy = dydx(x, y)

dy = (1+2*x)*sqrt(y);

Then the M-file can be invoked as in

>> [x,y] = rk4(@dydx,[0 1],1,0.1);

>> disp([x,y])

 0 1.0000

 0.1000 1.1130

 0.2000 1.2544

 0.3000 1.4280

 0.4000 1.6384

 0.5000 1.8906

 0.6000 2.1904

 0.7000 2.5440

 0.8000 2.9584

 0.9000 3.4410

 1.0000 4.0000

The following plot is generated

 203

18.13 Note that students can take two approaches to developing this M-file. The first program

shown below is strictly developed to solve 2 equations.

function [t,y1,y2] = rk42(dy1dt,dy2dt,tspan,y10,y20,h)

% [t,y1,y2] = rk42(dy1dt,dy2dt,tspan,y10,y20,h):

% uses the fourth-order RK method to integrate a pair of ODEs

% input:

% dy1dt = name of the M-file that evaluates the first ODE

% dy2dt = name of the M-file that evaluates the second ODE

% tspan = [ti, tf] where ti and tf = initial and

% final values of independent variable

% y10 = initial value of first dependent variable

% y20 = initial value of second dependent variable

% h = step size

% output:

% t = vector of independent variable

% y1 = vector of solution for first dependent variable

% y2 = vector of solution for second dependent variable

ti = tspan(1);

tf = tspan(2);

t = (ti:h:tf)';

n = length(t);

% if necessary, add an additional value of t

% so that range goes from t = ti to tf

if t(n)<tf

 t(n+1) = tf;

 n = n+1;

end

y1 = y10*ones(n,1); %preallocate y's to improve efficiency

y2 = y20*ones(n,1);

for i = 1:n-1

 hh = t(i+1) - t(i);

 k11 = feval(dy1dt,t(i),y1(i),y2(i));

 k12 = feval(dy2dt,t(i),y1(i),y2(i));

 ymid1 = y1(i) + k11*hh/2;

 ymid2 = y2(i) + k12*hh/2;

 k21 = feval(dy1dt,t(i)+hh/2,ymid1,ymid2);

 k22 = feval(dy2dt,t(i)+hh/2,ymid1,ymid2);

 ymid1 = y1(i) + k21*hh/2;

 ymid2 = y2(i) + k22*hh/2;

 k31 = feval(dy1dt,t(i)+hh/2,ymid1,ymid2);

 204

 k32 = feval(dy2dt,t(i)+hh/2,ymid1,ymid2);

 yend1 = y1(i) + k31*hh;

 yend2 = y2(i) + k32*hh;

 k41 = feval(dy1dt,t(i)+hh,yend1,yend2);

 k42 = feval(dy2dt,t(i)+hh,yend1,yend2);

 phi1 = (k11+2*(k21+k31)+k41)/6;

 phi2 = (k12+2*(k22+k32)+k42)/6;

 y1(i+1) = y1(i) + phi1*hh;

 y2(i+1) = y2(i) + phi2*hh;

end

plot(t,y1,t,y2,'--')

Here is the test of the solution of Prob. 18.7. First, M-files holding the differential equations

are written as

function dy = dy1dt(t, y1, y2)

dy = -2*y1 + 5*y2*exp(-t);

function dy = dy2dt(t, y1, y2)

dy = -y1*y2^2/2;

Then the M-file can be invoked as in

>> [t,y1,y2]=rk42(@dy1dt,@dy2dt,[0 0.4],2,4,0.1);

>> disp([t,y1,y2])

 0 2.0000 4.0000

 0.1000 3.0410 2.6286

 0.2000 3.3426 1.8453

 0.3000 3.3020 1.4106

 0.4000 3.1078 1.1500

The following plot is generated

A better approach is to develop an M-file that can be used for any number of simultaneous

first-order ODEs as in the following code:

function [t,y] = rk4sys(dydt,tspan,y0,h)

 205

% [t,y] = rk4sys(dydt,tspan,y0,h):

% uses the fourth-order RK method to integrate a pair of ODEs

% input:

% dydt = name of the M-file that evaluates the ODEs

% tspan = [ti, tf] where ti and tf = initial and

% final values of independent variable

% y0 = initial values of dependent variables

% h = step size

% output:

% t = vector of independent variable

% y = vector of solution for dependent variables

ti = tspan(1);

tf = tspan(2);

t = (ti:h:tf)';

n = length(t);

% if necessary, add an additional value of t

% so that range goes from t = ti to tf

if t(n)<tf

 t(n+1) = tf;

 n = n+1;

end

y(1,:) = y0;

for i = 1:n-1

 hh = t(i+1) - t(i);

 k1 = feval(dydt,t(i),y(i,:))';

 ymid = y(i,:) + k1*hh/2;

 k2 = feval(dydt,t(i)+hh/2,ymid)';

 ymid = y(i,:) + k2*hh/2;

 k3 = feval(dydt,t(i)+hh/2,ymid)';

 yend = y(i,:) + k3*hh;

 k4 = feval(dydt,t(i)+hh,yend)';

 phi = (k1+2*(k2+k3)+k4)/6;

 y(i+1,:) = y(i,:) + phi*hh;

end

plot(t,y(:,1),t,y(:,2),'--')

This code solves as many ODEs as are specified. Here is the test of the solution of Prob.

18.7. First, a single M-file holding the differential equations can be written as

function dy = dydtsys(t, y)

dy = [-2*y(1) + 5*y(2)*exp(-t);-y(1)*y(2)^2/2];

Then the M-file can be invoked as in

>> [t,y]=rk4sys(@dydtsys,[0 0.4],[2 4],0.1);

>> disp([t,y])

 0 2.0000 4.0000

 0.1000 3.0410 2.6286

 0.2000 3.3426 1.8453

 0.3000 3.3020 1.4106

 0.4000 3.1078 1.1500

 206

CHAPTER 19

19.1 (a) Euler’s method. Here are the first few steps

t x y dx/dt dy/dt

0 2.0000 1.0000 1.2000 -0.2000

0.1 2.1200 0.9800 1.2974 -0.1607

0.2 2.2497 0.9639 1.3985 -0.1206

0.3 2.3896 0.9519 1.5028 -0.0791

0.4 2.5399 0.9440 1.6093 -0.0359

0.5 2.7008 0.9404 1.7171 0.0096

The computation can be continued and the results plotted versus time:

0

4

8

12

16

0 5 10 15 20 25 30

x

y

Notice that the amplitudes of the oscillations are expanding. This is also illustrated by a

state-space plot (y versus x):

0

4

8

12

16

0 4 8 12 16

(b) RK4. Here is the first step in detail.

1.0)1)(2(4.0)1(9.0)1,2,0(

6.1)1)(2(7.0)2(5.1)1,2,0(

22,1

11,1

−=+−==

=−==

fk

fk

 207

995.0)05.0(1.01)05.0(

08.2)05.0(6.12)05.0(

=−=

=+=

y

x

06766.0)995.0,08.2,05.0(

67128.1)995.0,08.2,05.0(

22,2

11,2

−==

==

fk

fk

996617.0)05.0(91)05.0(

083564.2)05.0(67128.12)05.0(

=−=

=+=

y

x

06635.0)996617.0,083564.2,05.0(

671785.1)996617.0,083564.2,05.0(

22,3

11,3

−==

==

fk

fk

993365.0)1.0(06635.01)1.0(

167179.2)1.0(671785.12)1.0(

=−=

=+=

y

x

03291.0)993365.0,167179.2,1.0(

743808.1)993365.0,167179.2,1.0(

22,4

11,4

−==

==

fk

fk

The k’s can then be used to compute the increment functions,

06682.0
6

03291.0)06635.006766.0(21.0

671656.1
6

743808.1)671785.167128.1(26.1

2

1

−=
−−−+−

=

=
+++

=

φ

φ

These slope estimates can then be used to make the prediction for the first step

993318.0)1.0(06682.01)1.0(

16766.2)1.0(671656.12)1.0(

=−=

=+=

y

x

The remaining steps can be taken in a similar fashion and the first few results summarized

as

t x y

0 2 1

0.1 2.167166 0.993318

0.2 2.348838 0.993588

0.3 2.545029 1.001398

0.4 2.755314 1.017509

0.5 2.978663 1.042891

 208

A plot of all the values can be developed. Note that in contrast to Euler’s method, the

cycles do not amplify as time proceeds.

0

2

4

6

0 5 10 15 20 25 30

x

y

This periodic nature is also evident from the state-space plot. Because this is the expected

behavior we can see that the RK4 is far superior to Euler’s method for this particular

problem.

0

1

2

3

4

5

0 1 2 3 4 5

(c) To implement ode45, first a function is developed to evaluate the predator-prey ODEs,

function yp = predprey(t,y)

yp = [1.5*y(1)-0.7*y(1)*y(2);-0.9*y(2)+0.4*y(1)*y(2)];

Then, the solution and plot can be obtained:

>> [t,y] = ode45(@predprey,[0 30],[2 1]);

>> plot(t,y(:,1),t,y(:,2),'--')

>> legend('x(prey)','y(predator)')

 209

19.2 (a) Here are the results for the first few steps as computed with the classical RK4 technique

t x y z

0 5 5 5

0.1 9.78147 17.07946 10.43947

0.2 17.70297 20.8741 35.89688

0.3 10.81088 -2.52924 39.30744

0.4 0.549578 -5.54419 28.07462

0.5 -3.1646 -5.84128 22.36888

0.6 -5.57588 -8.42037 19.92312

0.7 -8.88719 -12.6789 22.14148

0.8 -11.9142 -13.43 29.80001

0.9 -10.6668 -7.21784 33.39903

1 -6.84678 -3.43018 29.30717

The results from t = 0 to 20 can be displayed graphically as

-30

-20

-10

0

10

20

30

40

50

0 5 10 15 20

x y z

 210

The solution appears chaotic bouncing around from negative to positive values. Although

the pattern might appear random, an underlying pattern emerges when we look at the state-

space plots. For example, here is the plot of y versus x.

-25

-15

-5

5

15

25

-20 -10 0 10 20

And here is z versus x,

0

10

20

30

40

50

-20 -10 0 10 20

(b) To implement any of the MATLAB functions, first a function is developed to evaluate

the Lorenz ODEs,

function yp = lorenz(t,y)

yp = [-10*y(1)+10*y(2);28*y(1)-y(2)-y(1)*y(3);-2.666667*y(3)+y(1)*y(2)];

Then, the solution and plots for the ode23 function can be obtained:

>> [t,y] = ode23(@lorenz,[0 20],[5 5 5]);

>> plot(t,y(:,1),t,y(:,2),'--',t,y(:,3),':')

>> legend('x','y','z')

>> plot(y(:,1),y(:,2))

 211

Notice how this plot, although qualitatively similar to the constant step RK4 result in (a),

the details are quite different. However, the state-space representation looks much more

consistent.

>> plot(y(:,1),y(:,2))

(c) The ode45 again differs in the details of the time-series plot,

>> [t,y] = ode45(@lorenz,[0 20],[5 5 5]);

>> plot(t,y(:,1),t,y(:,2),'--',t,y(:,3),':')

>> legend('x','y','z')

 212

(d) The ode23tb also differs in the details of the time-series plot,

>> [t,y] = ode23tb(@lorenz,[0 20],[5 5 5]);

>> plot(t,y(:,1),t,y(:,2),'--',t,y(:,3),':')

>> legend('x','y','z')

Close inspection of all the above results indicates that they all yield identical results for a

period of time. Thereafter, they abruptly begin to diverge. The reason for this behavior is

that these equations are highly sensitive to their initial conditions. After a number of steps,

because they all employ different algorithms, they begin to diverge slightly. When the

discrepancy becomes large enough (which for these equations is not that much), the

solution will tend to make a large jump. Thus, after awhile, the various solutions become

uncorrelated. Such solutions are said to be chaotic. It was this characteristic of these

particular equations that led Lorenz to suggest that long-range weather forecasts might not

be possible.

19.3 First step:

 213

Predictor:

y1
0 = 5.222138+[−0.5(4.143883)+e−2]1 = 3.285532

Corrector:

269562.35.0
2

)285532.3(5.0)143883.4(5.0
143883.4

5.22
1

1 =
+−+−

+=
−− ee

y

The corrector can be iterated to yield

j yi+1
j ,%aε

1 3.269562

2 3.271558 0.061

Second step:

Predictor:

y2
0 = 4.143883+[−0.5(3.271558)+e−2.5]1 = 2.590189

Predictor Modifier:

y2
0 = 2.590189+4/5(3.271558-3.285532) = 2.579010

Corrector:

573205.25.0
2

)579010.2(5.0)271558.3(5.0
271558.3

35.2
1

2 =
+−+−

+=
−− ee

y

The corrector can be iterated to yield

j yi+1
j ,%aε

1 2.573205

2 2.573931 0.0282

19.4 Before solving, for comparative purposes, we can develop the analytical solution as

t
t

ey
−

= 3

3

Thus, the true values being simulated in this problem are

t y

0 1

0.25 0.782868

0.5 0.632337

 214

The first step is taken with the fourth-order RK:

11)0(1)1,0(2
1 −=−== fk

875.0)125.0(11)125.0(=−=y

861328.0)875.0,125.0(2 −== fk

89233.0)125.0(861328.01)125.0(=−=y

87839.0)89233.0,125.0(3 −== fk

78040.0)25.0(87839.01)25.0(=−=y

73163.0)78040.0,25.0(4 −== fk

86851.0
6

73163.0)87839.0861328.0(21
−=

−−−+−
=φ

0.7828723)25.0(86851.01)25.0(=−=y

This result compares favorably with the analytical solution.

The second step can then be implemented with the non-self-starting Heun method:

Predictor:

633028629.05.0)7828723.0)25.0(7828723.0(1)5.0(2 =−+=y

Corrector: (First iteration):

63178298.025.0
2

)633028629.0)5.0(633028629.0(7339.0
7828723.0)5.0(

2

=
−+−

+=y

Corrector: (Second iteration):

0.6318997625.0
2

)63178298.0)5.0(63178298.0(7339.0
7828723.0)5.0(

2

=
−+−

+=y

The iterative process can be continued with the final result converging on 0.63188975.

19.5 (a) h < 2/100,000 = 2×10−5.

(b) The implicit Euler can be written for this problem as

()heyyy it
iii

1999,99000,100 11
+−

++ +−+=

 215

which can be solved for

h

hey
y

it
i

i
000,1001

999,99 1

1 +
+

=
+−

+

The results of applying this formula for the first few steps are shown below. A plot of the

entire solution is also displayed

t y
0 0

0.1 1.904638
0.2 1.818731
0.3 1.740819
0.4 1.67032
0.5 1.606531

0

1

2

0 1 2

19.6 The implicit Euler can be written for this problem as

()htytyy iiiii 1111 cos3)(sin30 ++++ +−+=

which can be solved for

h

hthty
y iii

i
301

cos3sin30 11
1 +

++
= ++

+

The results of applying this formula are tabulated and graphed below.

 t y t y t y t y
 0 0 1.2 0.952306 2.4 0.622925 3.6 -0.50089

 0.4 0.444484 1.6 0.993242 2.8 0.270163 4 -0.79745

 0.8 0.760677 2 0.877341 3.2 -0.12525

 216

-1

-0.5

0

0.5

1

1.5

0 1 2 3 4

19.7 (a) The explicit Euler can be written for this problem as

()hxxxx iiii ,2,1,11,1 1999999 ++=+

()hxxxx iiii ,2,1,21,2 20001000 −−+=+

Because the step-size is much too large for the stability requirements, the solution is

unstable,

 t x1 x2 dx1/dt dx2/dt
 0 1 1 2998 -3000
 0.05 150.9 -149 -147102 147100
 0.1 -7204.2 7206 7207803 -7207805
 0.15 353186 -353184 -3.5E+08 3.53E+08
 0.2 -1.7E+07 17305943 1.73E+10 -1.7E+10

(b) The implicit Euler can be written for this problem as

()x x x x hi i i i1 1 1 1 1 2 1999 1999, , , ,+ + += + +

()x x x x hi i i i2 1 2 1 1 2 11000 2000, , , ,+ + += + − −

or collecting terms

()

()

, , ,

, , ,

1 999 1999

1000 1 2000

1 1 2 1 1

1 1 2 1 2

− − =

+ + =
+ +

+ +

h x hx x

hx h x x

i i i

i i i

or substituting h = 0.05 and expressing in matrix format

− −⎡
⎣⎢

⎤
⎦⎥
⎧
⎨
⎩

⎫
⎬
⎭

= ⎧
⎨
⎩

⎫
⎬
⎭

+

+

48 95 99 95
50 101

1 1

2 1

1

2

. . ,

,

,

,

x

x

x

x
i

i

i

i

Thus, to solve for the first time step, we substitute the initial conditions for the right-hand

side and solve the 2x2 system of equations. The best way to do this is with LU

decomposition since we will have to solve the system repeatedly. For the present case,

because its easier to display, we will use the matrix inverse to obtain the solution. Thus, if

the matrix is inverted, the solution for the first step amounts to the matrix multiplication,

 217

{ } { }x

x
i

i

1 1

2 1

1886088 186648
0 93371 0 9141

1
1

3752568
184781

,

,

. .
. .

.
.

+

+

⎧
⎨
⎩

⎫
⎬
⎭

= − −
⎡
⎣⎢

⎤
⎦⎥

= −

For the second step (from x = 0.05 to 0.1),

{ } { }x

x
i

i

1 1

2 1

1886088 186648
0 93371 0 9141

3 752568
184781

3 62878
181472

,

,

. .
. .

.
.

.
.

+

+

⎧
⎨
⎩

⎫
⎬
⎭

= − −
⎡
⎣⎢

⎤
⎦⎥ − = −

The remaining steps can be implemented in a similar fashion to give

t x1 x2
0 1 1

0.05 3.752568 -1.84781

0.1 3.62878 -1.81472

0.15 3.457057 -1.72938

0.2 3.292457 -1.64705

The results are plotted below, along with a solution with the explicit Euler using a step of

0.0005.

-2

0

2

4

0 0.1 0.2

x1

x2

19.8 (a) The exact solution is

08.04.025 +++= ttAey t

If the initial condition at t = 0 is 0.8, A = 0,

08.04.02 ++= tty

Note that even though the choice of the initial condition removes the positive exponential

terms, it still lurks in the background. Very tiny round off errors in the numerical solutions

bring it to the fore. Hence all of the following solutions eventually diverge from the

analytical solution.

(b) 4th order RK. The plot shows the numerical solution (bold line) along with the exact

solution (fine line).

 218

-10

-5

0

5

10

15

0 1 2 3 4

(c)
function yp = dy(t,y)

yp = 5*(y-t^2);

>> tspan = [0,5];

>> y0 = 0.08;

>> [t,y] = ode45(@dy1,tspan,y0);

(d)
>> [t,y] = ode23s(@dy1,tspan,y0);

(e)
>> [t,y] = ode23tb(@dy1,tspan,y0);

-30

-20

-10

0

10

20

30

0 1 2 3 4 5

RK4 Analytical ODE45

ODE23s ODE23tb

19.9 (a) As in Example 17.5, the humps function can be integrated with the quad function as in

>> format long

>> quad(@humps,0,1)

ans =

 29.85832612842764

(b) Using ode45 is based on recognizing that the evaluation of the definite integral

 219

dxxfI
b

a
)(

 ∫=

is equivalent to solving the differential equation

)(xf
dx

dy
=

for y(b) given the initial condition y(a) = 0. Thus, we must solve the following initial-value

problem:

6
04.0)9.0(

1

01.0)3.0(

1
22

−
+−

+
+−

=
xxdx

dy

where y(0) = 0. To do this with ode45, we must first set up an M-file to evaluate the right-

hand side of the differential equation,

function dy = humpsODE(x,y)

dy = 1./((x-0.3).^2 + 0.01) + 1./((x-0.9).^2+0.04) - 6;

Then, the integral can be evaluated as

>> [x,y] = ode45(@humpsODE,[0 0.5 1],0);

>> disp([x,y])

 0 0

 0.50000000000000 21.78356481821654

 1.00000000000000 29.85525185285369

Thus, the integral estimate is within 0.01% of the estimate obtained with the quad function.

Note that a better estimate can be obtained by using the odeset function to set a smaller

relative tolerance as in

>> options = odeset('RelTol',1e-8);

>> [x,y] = ode45(@humpsODE,[0 0.5 1],0,options);

>> disp([x,y])

 0 0

 0.50000000000000 21.78683736423308

 1.00000000000000 29.85832514287622

19.10 The nonlinear model can be expressed as the following set of ODEs,

v
dt

d
=

θ

θsin
l

g

dt

dv
−=

where v = the angular velocity. A function can be developed to compute the right-hand-side

of this pair of ODEs for the case where g = 9.81 and l = 0.6 m,

function dy = dpnon(t, y)

dy = [y(2);-9.81/0.6*sin(y(1))];

 220

The linear model can be expressed as the following set of ODEs,

v
dt

d
=

θ

θ
l

g

dt

dv
−=

A function can be developed as,

function dy = dplin(t, y)

dy = [y(2);-9.81/0.6*y(1)];

Then, the solution and plot can be obtained for the case where θ(0) = π/8. Note that we only

depict the displacement (θ or y(1)) in the plot

>> [tn yn] = ode45(@dpnon,[0 10],[pi/8 0]);

>> [tl yl] = ode45(@dplin,[0 10],[pi/8 0]);

>> plot(tn,yn(:,1),tl,yl(:,1),'--')

>> legend('nonlinear','linear')

You should notice two aspects of this plot. First, because the displacement is small, the

linear solution provides a decent approximation of the more physically realistic nonlinear

case. Second, the two solutions diverge as the computation progresses.

For the larger initial displacement (θ(0) = π/8), the solution and plot can be obtained as,

>> [tn yn] = ode45(@dpnon,[0 10],[pi/2 0]);

>> [tl yl] = ode45(@dplin,[0 10],[pi/2 0]);

>> plot(tn,yn(:,1),tl,yl(:,1),'--')

>> legend('nonlinear','linear')

 221

Because the linear approximation is only valid at small displacements, there are now clear

and significant discrepancies between the nonlinear and linear cases that are exacerbated as

the solution progresses.

19.11 A function can be developed to compute the right-hand-side of the ODE,

function yp = dpdt(t, p)

yp = 0.026*(1-p/12000)*p;

The function ode45 can be used to integrate this equation and generate results

corresponding to the dates for the measured population data. A plot can also be generated

of the solution and the data,

>> tspan = 1950:5:2000;

>> pdata = [2555 2780 3040 3346 3708 4087 4454 4850 5276 5686 6079]';

>> [t,p] = ode45(@dpdt,tspan,2555);

>> plot(t,p,t,pdata,'o')

The sum of the squares of the residuals can be computed as

 222

>> SSR = sum((p - pdata).^2)

SSR =

 4.2365e+004

 223

CHAPTER 20

20.1 The matrix inverse can be evaluated and the power method expressed as

0][
0375.0025.00125.0
025.005.0025.0
0125.0025.00375.0

=−
⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
Iλ

Iteration 1:

⎪⎭

⎪
⎬
⎫

⎪⎩

⎪
⎨
⎧

=
⎪⎭

⎪
⎬
⎫

⎪⎩

⎪
⎨
⎧

=
⎪⎭

⎪
⎬
⎫

⎪⎩

⎪
⎨
⎧

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡

75.0
1
75.0

1.0
075.0

1.0
075.0

1
1
1

0375.0025.00125.0
025.005.0025.0
0125.0025.00375.0

Iteration 2:

⎪⎭

⎪
⎬
⎫

⎪⎩

⎪
⎨
⎧

=
⎪⎭

⎪
⎬
⎫

⎪⎩

⎪
⎨
⎧

=
⎪⎭

⎪
⎬
⎫

⎪⎩

⎪
⎨
⎧

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡

71428571.0
1

71428571.0
0875.0

0625.0
0875.0
0625.0

75.0
1
75.0

0375.0025.00125.0
025.005.0025.0

0125.0025.00375.0

%29.14%100
0875.0

1.00875.0
=×

−
=aε

Iteration 3:

⎪⎭

⎪
⎬
⎫

⎪⎩

⎪
⎨
⎧

=
⎪⎭

⎪
⎬
⎫

⎪⎩

⎪
⎨
⎧

=
⎪⎭

⎪
⎬
⎫

⎪⎩

⎪
⎨
⎧

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡

708333.0
1

708333.0
085714.0

060714.0
085714.0
060714.0

71428571.0
1

71428571.0

0375.0025.00125.0
025.005.0025.0
0125.0025.00375.0

%08.2%100
085714.0

0875.0085714.0
=×

−
=aε

The iterations can be continued. After 10 iterations, the relative error falls to 0.00000884%

with the result

⎪⎭

⎪
⎬
⎫

⎪⎩

⎪
⎨
⎧

70710678.0
1

70710678.0
085355.0

Thus, the smallest eigenvalue is 1/0.085355 = 11.71573.

20.2 (a) Minors:

()2 3 4
4 7

2 8 4
10 7

10 8 3
10 4

10 101 183 2− −
− − − + − = − + + +λ λ

λ λ
λ λ λ λ

(b) The eigenvalues can be determined by finding the roots of the characteristic polynomial

determined in (a). This can be done in MATLAB,

 224

>> a = [1.0000 -10.0000 -101.0000 -18.0000];

>> roots(a)

ans =

 16.2741

 -6.0926

 -0.1815

(c) The power method for the highest eigenvalue can be implemented with MATLAB

commands,

>> A = [2 2 10;8 3 4;10 4 5];

>> x = [1 1 1]';

First iteration:

>> x = A*x

x =

 14

 15

 19

>> e = max(x)

e =

 19

>> x = x/e

x =

 0.7368

 0.7895

 1.0000

Second iteration:

>> x = A*x

x =

 13.0526

 12.2632

 15.5263

>> e = max(x)

e =

 15.5263

>> x = x/e

x =

 0.8407

 0.7898

 1.0000

Third iteration:

>> x = A*x

x =

 13.2610

 13.0949

 16.5661

>> e = max(x)

e =

 225

 16.5661

>> x = x/e

x =

 0.8005

 0.7905

 1.0000

Fourth iteration:

>> x = A*x

x =

 13.1819

 12.7753

 16.1668

>> e = max(x)

e =

 16.1668

>> x = x/e

x =

 0.8154

 0.7902

 1.0000

Thus, after four iterations, the result is converging on a highest eigenvalue of 16.2741 with

a corresponding eigenvector of [0.811 0.790 1].

(d) The power method for the lowest eigenvalue can be implemented with MATLAB

commands,

>> A = [2 2 10;8 3 4;10 4 5];

>> x = [1 1 1]';

>> AI = inv(A)

AI =

 -0.0556 1.6667 -1.2222

 -0.0000 -5.0000 4.0000

 0.1111 0.6667 -0.5556

First iteration:

>> x = AI*x

x =

 0.3889

 -1.0000

 0.2222

>> [e,i] = max(abs(x))

e =

 1

i =

 2

>> x = x/x(i)

x =

 -0.3889

 1.0000

 -0.2222

 226

Second iteration:

>> x = AI*x

x =

 1.9599

 -5.8889

 0.7469

>> [e,i] = max(abs(x))

e =

 5.8889

i =

 2

>> x = x/x(i)

x =

 -0.3328

 1.0000

 -0.1268

Third iteration:

>> x = AI*x

x =

 1.8402

 -5.5073

 0.7002

>> [e,i] = max(abs(x))

e =

 5.5073

i =

 2

>> x = x/x(i)

x =

 -0.3341

 1.0000

 -0.1271

Thus, after three iterations, the estimate of the lowest eigenvalue is converging on the

correct value of 1/(−5.5085) = −0.1815 with an eigenvector of [−0.3341 1 -0.1271].

20.3 MATLAB can be used to solve for the eigenvalues with the polynomial method. First, the

matrix can be put into the proper form for an eigenvalue analysis by bringing all terms to

the left-hand-side of the equation.

0
2123

2487
3794

3

2

1

=
⎪⎭

⎪
⎬
⎫

⎪⎩

⎪
⎨
⎧

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡

−
−

−

x

x

x

λ
λ

λ

Then, each row can be divided by the coefficient of λ in that row.

0
5.015.1

5.0275.1
3333.07778.04444.0

3

2

1

=
⎪⎭

⎪
⎬
⎫

⎪⎩

⎪
⎨
⎧

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡

−
−

−

x

x

x

λ
λ

λ

 227

MATLAB can then be used to determine the eigenvalues as the roots of the characteristic

polynomial,

>> A=[4/9 7/9 3/9;7/4 8/4 2/4;3/2 2/2 1/2];

>> p=poly(A)

p =

 1.0000 -2.9444 -0.2500 0.2917

>> e=roots(p)

e =

 2.9954

 -0.3386

 0.2876

20.4 (a) MATLAB can be used to solve for the eigenvalues with the polynomial method. First,

the matrix can be put into the proper form by dividing each row by 0.36.

>> A = [2/.36 -1/.36 0 0;-1/.36 2/.36 -1/.36 0;0 -1/.36 2/.36 -

1/.36;0 0 -1/.36 2/.36]

A =

 5.5556 -2.7778 0 0

 -2.7778 5.5556 -2.7778 0

 0 -2.7778 5.5556 -2.7778

 0 0 -2.7778 5.5556

Then, the poly function can be used to generate the characteristic polynomial,

>> p = poly(A)

p =

 1.0000 -22.2222 162.0370 -428.6694 297.6871

The roots of this equation represent the eigenvalues,

>> e = roots(p)

e =

 10.0501

 7.2723

 3.8388

 1.0610

(b) The power method can be used to determine the highest eigenvalue:

>> A = [2/.36 -1/.36 0 0;

-1/.36 2/.36 -1/.36 0;

0 -1/.36 2/.36 -1/.36;

0 0 -1/.36 2/.36];

>> x = [1 1 1 1]';

First iteration:

>> x = A*x

x =

 228

 2.7778

 0

 0

 2.7778

>> e = max(x)

e =

 2.7778

>> x = x/e

x =

 1

 0

 0

 1

Second iteration:

>> x = A*x

x =

 5.5556

 -2.7778

 -2.7778

 5.5556

>> e = max(x)

e =

 5.5556

>> x = x/e

x =

 1.0000

 -0.5000

 -0.5000

 1.0000

Third iteration:

>> x = A*x

x =

 6.9444

 -4.1667

 -4.1667

 6.9444

>> e = max(x)

e =

 6.9444

>> x = x/e

x =

 1.0000

 -0.6000

 -0.6000

 1.0000

The process can be continued. After 9 iterations, the method does not converge on the

highest eigenvalue. Rather, it converges on the second highest eigenvalue of 7.2723 with a

corresponding eigenvector of [1 −0.6180 −0.6180 1].

 229

(c) The power method can be used to determine the lowest eigenvalue by first determining

the matrix inverse:

>> A = [2/.36 -1/.36 0 0;-1/.36 2/.36 -1/.36 0;0 -1/.36 2/.36 -

1/.36;0 0 -1/.36 2/.36];

>> AI = inv(A)

AI =

 0.2880 0.2160 0.1440 0.0720

 0.2160 0.4320 0.2880 0.1440

 0.1440 0.2880 0.4320 0.2160

 0.0720 0.1440 0.2160 0.2880

>> x = [1 1 1 1]';

First iteration:

>> x = AI*x

x =

 0.7200

 1.0800

 1.0800

 0.7200

>> e = max(x)

e =

 1.0800

>> x = x/e

x =

 0.6667

 1.0000

 1.0000

 0.6667

Second iteration:

>> x = AI*x

x =

 0.6000

 0.9600

 0.9600

 0.6000

>> e = max(x)

e =

 0.9600

>> x = x/e

x =

 0.6250

 1.0000

 1.0000

 0.6250

Third iteration:

>> x = AI*x

x =

 0.5850

 0.9450

 230

 0.9450

 0.5850

>> e = max(x)

e =

 0.9450

>> x = x/e

x =

 0.6190

 1.0000

 1.0000

 0.6190

The process can be continued. After 9 iterations, the method converges on the lowest

eigenvalue of 1/0.9450 = 1.0610 with a corresponding eigenvector of [0.6180 1 1 0.6180].

20.5 The parameters can be substituted into force balance equations to give

()
()

() 0225.0 225.0

0 18.0 42.0 24.0

0 2.0 45.0

3
2

2

32
2

1

21
2

=−+−
=−−+−
=−−

XX

XXX

XX

ω
ω

ω

A MATLAB session can be conducted to evaluate the eigenvalues and eigenvectors as

>> A = [0.450 -0.200 0.000;-0.240 0.420 -0.180;0.000 -0.225 0.225];

>> [v,d] = eig(A)

v =

 -0.5879 -0.6344 0.2913

 0.7307 -0.3506 0.5725

 -0.3471 0.6890 0.7664

d =

 0.6986 0 0

 0 0.3395 0

 0 0 0.0569

Therefore, the eigenvalues are 0.6986, 0.3395 and 0.0569. The corresponding eigenvectors

are (normalizing so that the amplitude for the third floor is one),

⎪⎭

⎪
⎬
⎫

⎪⎩

⎪
⎨
⎧

⎪⎭

⎪
⎬
⎫

⎪⎩

⎪
⎨
⎧

−
−

⎪⎭

⎪
⎬
⎫

⎪⎩

⎪
⎨
⎧

−
1

746999.0
380089.0

1
50885.0
92075.0

1
10516.2

693748.1

A graph can be made showing the three modes

 231

-2 -1 0 1 2-2 -1 0 1 2 -1 0 1 0 1

Mode 1 Mode 2 Mode 3

20.6 As was done in Section 20.2, assume that the solution is ij = Ij sin(ωt). Therefore, the second

derivative is

)sin(2

2

2

tI
dt

id
j

j ωω−=

Substituting these relationships into the differential equations gives

0))sin()sin((
001.0

1

001.0

1
)sin(

0))sin()sin((
001.0

1
))sin()sin((

001.0

1
)sin(

0))sin()sin((
1

)sin(

3233
2

3

21322
2

2

21

1

1
2

1

=−−+−

=−−−+−

=−+−

tItIitIL

tItItItItIL

tItI
C

tIL

ωωωω

ωωωωωω

ωωωω

All the sin(ωt) terms can be cancelled. In addition, the L’s and C’s are constant. Therefore,

the system simplifies to

0
210

121
011

3

2

1

=
⎪⎭

⎪
⎬
⎫

⎪⎩

⎪
⎨
⎧

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡

−−
−−−

−−

I

I

I

λ
λ

λ

where λ = LCω2. The following MATLAB session can then be used to evaluate the

eigenvalues and eigenvectors

>> a = [1 -1 0;-1 2 -1;0 -1 2]

>> [v,d] = eig(a)

v =

 -0.7370 -0.5910 0.3280

 -0.5910 0.3280 -0.7370

 -0.3280 0.7370 0.5910

d =

 0.1981 0 0

 232

 0 1.5550 0

 0 0 3.2470

The matrix v consists of the system's three eigenvectors (arranged as columns), and d is a

matrix with the corresponding eigenvalues on the diagonal. Thus, MATLAB computes that

the eigenvalues are λ = 0.1981, 1.5550, and 3.2470. These values in turn can be used to

compute the natural frequencies for the system

⎪
⎪
⎪

⎭

⎪
⎪
⎪

⎬

⎫

⎪
⎪
⎪

⎩

⎪
⎪
⎪

⎨

⎧

=

LC

LC

LC

8019.1

2470.1

4450.0

ω

20.7 The force balances can be written as

0
2

2
2

00

00

00

3

2

1

3

2

1

3

2

1

=
⎪⎭

⎪
⎬
⎫

⎪⎩

⎪
⎨
⎧

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡

−−
−−
−−

+
⎪⎭

⎪
⎬
⎫

⎪⎩

⎪
⎨
⎧

⎥
⎥

⎦

⎤

⎢
⎢

⎣

⎡

x

x

x

kkk
kkk
kkk

x

x

x

m

m

m

&&
&&
&&

Assuming that the solution is xi = Xi sin(ωt), we get the following matrix

0

2

2

2

3

2

1

2
3

2
2

2
1

=
⎪⎭

⎪
⎬
⎫

⎪⎩

⎪
⎨
⎧

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

−−−
−−−
−−−

X

X

X

mkkk

kmkk

kkmk

ω
ω

ω

Using MATLAB,

>> k = 1;

>> kmw2 = [2*k,-k,-k;-k,2*k,-k;-k,-k,2*k];

>> [v,d] = eig(kmw2)

v =

 0.8034 0.1456 0.5774

 -0.2757 -0.7686 0.5774

 -0.5278 0.6230 0.5774

d =

 3.0000 0 0

 0 3.0000 0

 0 0 0.0000

Therefore, the eigenvalues are 0, 3, and 3. Setting these eigenvalues equal to
2ωm , the

three frequencies can be obtained.

00 1

2

1 =⇒= ωωm (Hz) 1st mode of oscillation

30 2

2

2 =⇒= ωωm (Hz) 2nd mode

 233

30 3

2

3 =⇒= ωωm (Hz) 3rd mode

20.8 The pair of second-order differential equations can be reexpressed as a system of four first-

order ODE’s,

212
4

121
3

4
2

3
1

5)(5

)(55

xxx
dt

dx

xxx
dt

dx

x
dt

dx

x
dt

dx

−−−=

−+−=

=

=

An M-file can be set up to evaluate the right-hand side of these ODEs:

function dx = dxdt(t, x)

dx = [x(3);x(4);-5*x(1)+5*(x(2)-x(1));-5*(x(2)-x(1))-5*x(2)];

(a) x1 = x2 = 1

>> tspan = [0,10];

>> y0 = [1,1,0,0];

>> [t,y] = ode45('dxdt',tspan,y0);

>> plot(t,y(:,1),t,y(:,2),'--')

>> legend('x1','x2')

Because we have set the initial conditions consistent with one of the eigenvectors, the two

masses oscillate in unison.

(b) x1 = 1, x2 = –0.6

>> tspan=[0,10];

>> y0=[1,-0.6,0,0];

 234

>> [t,y]=ode45('dxdt',tspan,y0);

>> plot(t,y(:,1),t,y(:,2),'--')

>> legend('x1','x2')

Now, because the initial conditions do not correspond to one of the eigenvectors, the

motion involves the superposition of both modes.

20.9

function [e, v] = powmax(A)

% [e, v] = powmax(A):

% uses the power method to find the highest eigenvalue and

% the corresponding eigenvector

% input:

% A = matrix to be analyzed

% output:

% e = eigenvalue

% v = eigenvector

es = 0.0001;

maxit = 100;

n = size(A);

for i=1:n

 v(i)=1;

end

v = v';

e = 1;

iter = 0;

while (1)

 eold = e;

 x = A*v;

 [e,i] = max(abs(x));

 e = sign(x(i))*e;

 v = x/e;

 iter = iter + 1;

 ea = abs((e - eold)/e) * 100;

 if ea <= es | iter >= maxit, break, end

end

 235

Application to solve Prob. 20.2,

>> A = [2 2 10;8 3 4;10 4 5];

>> [e, v] = powmax(A)

e =

 16.2741

v =

 0.8113

 0.7903

 1.0000

20.10

function [e, v] = powmin(A)

% [e, v] = powmin(A):

% uses the power method to find the lowest eigenvalue and

% the corresponding eigenvector

% input:

% A = matrix to be analyzed

% output:

% e = eigenvalue

% v = eigenvector

es = 0.0001;

maxit = 100;

n = size(A);

for i=1:n

 v(i)=1;

end

v = v';

e = 1;

Ai = inv(A);

iter = 0;

while (1)

 eold = e;

 x = Ai*v;

 [e,i] = max(abs(x));

 e = sign(x(i))*e;

 v = x/e;

 iter = iter + 1;

 ea = abs((e - eold)/e) * 100;

 if ea <= es | iter >= maxit, break, end

end

e = 1./e;

Application to solve Prob. 20.2,

>> [e, v] = powmin(A)

e =

 -0.1815

v =

 -0.3341

 1.0000

 -0.1271

	Solution Manual

